10 research outputs found

    Micrometeorological, plant-ecological, and soil-hydrological measurements in stands of spruce and beech in the Tharandt forest

    Get PDF
    This paper addresses micrometeorological, plant-ecological, and soil-hydrological measurements in stands of spruce and beech as a means to understand the processes. The long-term flux site Anchor Station Tharandt (dominated by 120-year-old spruce) shows the high dynamics of land surface- atmosphere interactions as well as the climatologically relevant effects on turbulent energy flux partitioning, carbon sequestration, and evapotranspiration (ET). Climate, phenology, and fluxes support the idea of dividing the year into an ‘active phase’ (April–September) and a ‘dormant phase’ (October–March); carbon sequestration, available energy (net radiation), and sensible heat flux are almost negligible in the dormant season. Only ET shows a significant contribution to the annual budget (25 % of the active phase) from interception (evaporation from wetted needles) driven by sensible heat flux from the atmosphere. The interannual variation of the fluxes is generally small (e. g., 500 to 650 gC m-2 yr-1 of C uptake) even for the severe drought year of 2003 (400 gC m-2) or with thinning in 2002. Compared to the beech site, the spruce site – at least in the active season – experienced similar rates of ET but smaller rates of C uptake. Canopy drip was 55 % of precipitation at the spruce site. Canopy drip (40 %) and stem flow (25 %) added up to 65 % of canopy precipitation at the beech site. This difference likely explains the generally higher soil moisture at the beech site. As a consequence of this study, models with sufficient complexity are recommended to represent the structural differences of different forest types including their phenophases. For a better representation of forests, e. g., in climate models, land surface–atmosphere interactions must be included.Diese Arbeit benutzt mikrometeorologische, pflanzenökologische und bodenhydrologische Messungen als Mittel zum Prozessverständnis. Der langfristige Flussmessstandort Ankerstation Tharandter Wald (von 120 jährigen Fichten dominiert) zeigt die große Dynamik der Landoberflächen-Atmosphären-Wechselwirkungen wie auch ihre Klimaeffekte auf die Verteilung der turbulenten Wärmeströme, die Kohlenstoffsequestrierung und die Evapotranspiration (ET). Klimawerte, Phänologie und Flüsse unterstützen die Einteilung des Jahres in eine ‚aktive Phase’ (April–September) und eine ‚Ruhephase’ (Oktober– März): Kohlenstoffsequestrierung, zur Verfügung stehende Energie (Strahlungsbilanz) und fühlbarer Wärmestrom sind in der Ruhephase praktisch vernachlässigbar. Nur ET zeigt einen signifikanten Beitrag zur Jahresbilanz (25 % der aktiven Phase) aus der Interzeption (Evaporation von benetzten Nadeln), die vom fühlbaren Wärmestrom aus der Atmosphäre angetrieben wird. Die zwischenjährliche Variation der Flüsse ist im Allgemeinen klein (z. B. 500–650 gC m-2 yr -1) C-Aufnahme), selbst mit dem starken Dürrejahr 2003 (400 gC m-2) oder dem Effekt der Durchforstung 2002. Verglichen mit der Buche erreicht die Fichte – zumindest in der aktiven Periode – ähnliche Werte von ET aber niedrigere bei der C-Aufnahme. Die Kronentraufe beträgt bei der Fichte nur ca. 55 % des Niederschlages, bei der Buche summieren sich ca. 40 % Kronentraufe und knapp 25 % Stammabfluss zu etwa 65 % Bestandesniederschlag. Dieser Unterschied erklärt möglicherweise die im Allgemeinen höhere Bodenfeuchte am Buchenstandort. Als Resultat aus dieser Arbeit werden Modelle mit ausreichender Komplexität empfohlen, welche Bestandesstruktur und Phänophasen berücksichtigen. Das ist eine Voraussetzung für eine bessere Berücksichtigung von Wäldern mit ihren Landoberflächen- Atmosphären-Wechselwirkungen, z. B. in Klimamodellen

    Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF

    The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF
    The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.Peer reviewe

    Serial locally applied water-filtered infrared a radiation in axial spondyloarthritis – a randomized controlled trial

    No full text
    Introduction Aim of this randomized controlled trial was to evaluate the effects of serial locally applied water-filtered infrared A radiation (sl-wIRAR) in patients with axial spondyloarthritis (axSpA). Methods axSpA patients with active disease undergoing a 7-day multimodal rheumatologic complex treatment under non-steroidal anti-inflammatory drug (NSAID) therapy were eligible. Patients were randomly assigned in a 1:1 ratio. The intervention group (IG) received additional sl-wIRAR treatment of the back (2 treatments for 30 min per day for 6 days) to assess whether locally applied hyperthermia can i) reduce pain levels, ii) reduce disease activity and improve functionality and iii) whether an effect on tumor necrosis factor α (TNFα) levels is detectable. Additionally, it was examined whether a reduction in NSAID therapy could be achieved after trial completion. Results 71 patients completed the trial (IG: 36 patients, control group (CG) 35 patients). sl-wIRAR led to a significant pain reduction measured by a numeric rating scale (p < .0005) and in comparison, to the CG (p = .006). sl-wIRAR treatment resulted in a significant reduction in the Bath Anyklosing Spondylitis Disease Activity Index (BASDAI) (p = .004) and Bath Ankylosing Spondylitis Functional Index (p = .004) with no significant difference to the CG. TNF-α levels were significantly decreased (p = .001) only in the IG with a significant difference to the CG (p = .01). 26 (76%) of patients in the IC reduced their NSAID therapy after trial completion. Conclusion sl-wIRAR treatment in axSpA leads to a rapid reduction in pain allowing NSAID dosage reduction. A reason for these desirable effects could be a change in TNFα levels

    ADVEX - The CarboEurope-Integrated Project Advection Experiment Data Set

    No full text
    &lt;p&gt;Extensive field measurements have been performed at three CarboEurope-Integrated Project forest sites with different topography (Renon/Ritten, Italian Alps, Italy; Wetzstein, Thuringia, Germany; Norunda, Uppland, Sweden) to evaluate the relevant terms of the carbon balance by measuring CO2 concentrations [CO2] and the wind field in a 3D multitower cube setup. The same experimental setup (geometry and instrumentation) and the same methodology were applied to all the three experiments. Refer to Feigenwinter et al. (2008), &lt;a href="https://doi.org/10.1016/j.agrformet.2007.08.013"&gt;https://doi.org/10.1016/j.agrformet.2007.08.013&lt;/a&gt; for more details of the ADVEX campaign.&lt;/p&gt;This work received funding from CE-IP (CarboEurope-Integrated Project) of the European Commission (GOCECT2003- 505572). Special thanks go to the following administrative, scientific and technical staff: to Luigi Minach and Guenther Kerschbaumer of the Agency of Environment and to workers from the Forest Service of the Autonomous Province of Bolzano, Italy; to Michael Hielscher and many others from the field division of the Max Planck Institute for Biogeochemistry, Jena, Germany; to Thomas Pluntke from the Institute of Hydrology and Meteorology of the Technical University of Dresden, Germany; to Alain Debacq from the Faculte´ Universitaire des Sciences Agronomiques de Gembloux, Belgium; to Monika trömgren, Anders Bath and Lars-Olov Karlsson of the GeoBioshpere Science Centre of the Lund University, Sweden. The corresponding author's thanks go to Roland Vogt and Eberhard Parlow, Institute ofMeteorology, Climatology and Remote Sensing at University Basel, Switzerland, for their support in instrumentation and infrastructure. The ADVEX field activities would not have been possible without the substantial support from all participating institutions

    Comparison of horizontal and vertical advective CO2 fluxes at three forest sites

    Full text link
    Extensive field measurements have been performed at three CarboEurope-Integrated Project forest sites with different topography (Renon/Ritten, Italian Alps, Italy; Wetzstein, Thuringia, Germany; Norunda, Uppland, Sweden) to evaluate the relevant terms of the carbon balance by measuring CO2 concentrations [CO2] and the wind field in a 3D multi-tower cube setup. The same experimental setup (geometry and instrumentation) and the same methodology were applied to all the three experiments. It is shown that all sites are affected by advection in different ways and strengths. Everywhere, vertical advection (F-VA) occurred only at night. During the day, F-VA disappeared because of turbulent mixing, leading to a uniform vertical profile of [CO2]. Mean F-VA was nearly zero at the hilly site (wetzstein) and at the flat site (Norunda). However, large, momentary positive or negative contributions occurred at the flat site, whereas vertical non-turbulent fluxes were generally very small at the hilly site. At the slope site (Renon), F-VA was always positive at night because of the permanently negative mean vertical wind component resulting from downslope winds. Horizontal advection also occurred mainly at night. It was positive at the slope site and negative at the flat site in the mean diurnal course. The size of the averaged non-turbulent advective fluxes was of the same order of magnitude as the turbulent flux measured by eddy-covariance technique, but the scatter was very high. This implies that it is not advisable to use directly measured quantities of the non-turbulent advective fluxes for the estimation of net ecosystem exchange (NEE) on e.g. an hourly basis. However, situations with and without advection were closely related to local or synoptic meteorological conditions. Thus, it is possible to separate advection affected NEE estimates from fluxes which are representative of the source term. However, the development of a robust correction scheme for advection requires a more detailed site-specific analysis of single events for the identification of the relevant processes. This paper presents mean characteristics of the advective CO2 fluxes in a first site-to-site comparison and evaluates the main problems for future research. (c) 2007 Elsevier B.V. All rights reserved

    Reprints and permissions:

    Get PDF
    sagepub.co.uk/journalsPermissions.na

    The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    No full text
    Abstract The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible
    corecore