144 research outputs found

    Contribution of atmospheric emissions to the contamination of leaf vegetables by persistent organic pollutants (POPs): Application to southeastern France

    Get PDF
    International audienceA modeling approach has been developed to estimate the contribution of atmospheric emissions to the contamination of leaf vegetables by persistent organic pollutants (POPs). It combines an Eulerian chemical transport model for atmospheric processes (Polair3D/Polyphemus) with a fate and transport model for soil and vegetation (Ourson). These two models were specifically adapted for POPs. Results are presented for benzo(a)pyrene (BaP). As expected no accumulation of BaP in leaf vegetables appears during the growth period for each harvest over the 10 years simulated. For BaP and leaf vegetables, this contamination depends primarily on direct atmospheric deposition without chemical transfer from the soil to the plant. These modeling results are compared to available data

    Application of an integrated approach to evaluate health risks for toxic chemicals by linking multimedia environmental and PBPK models

    Get PDF
    The paradigm of health risk assessment may consist of two main pillars, i.e., the exposure and dose-response assessments. Human exposure to chemicals via multiple pathways can be estimated by environmental multimedia models, which calculate the distribution of chemicals in the component media, i.e., air, water, soil, plants, and animal media. Combined with the information about human behaviors such as dietary habits, time spent outside, and etc, the multimedia models can provide an estimation of the daily chemical intake by inhalation or ingestion by humans. Physiologically based pharmacokinetic (PBPK) models are used to estimate the body burden of toxic chemicals throughout the entire human lifespan, integrating the evolution of the physiology and anatomy from childhood to advanced aged. The use of such PBPK models overcomes the limitations that dose-response modelling holds, e.g., it simply determines the relationship between the dose and the probability of an effect. The European project 2-FUN (Full-chain and UNcertainty Approaches for Assessing Health Risks in FUture ENvironmental Scenarios) aims at improving the approaches currently used in exposure and dose-response assessments. According to the aim of that project, an environmental multimedia model and a generic PBPK model are coupled as an integrated tool (2-FUN tool) and built up on a platform system, Ecolego. This study presents here the first application of the integrated tool to perform the full-chain risk assessment of a chemical for human health, considering multiple exposure pathways of chemical via inhalation of out-door air, and ingestion of water and foods. For this application of the tool, a case study was designed based on the information available in a region situated on the Seine river watershed, downstream of the Paris megacity and Benzo(a)pyrene (B(a)P) was selected as a target chemical substance. This study focuses especially on the propagation of uncertainty and inter-individual variability along the modelling chain. A probabilistic simulation was then performed to identify the input parameters and exposure pathways sensitive to model outputs (e.g., internal effective concentrations in organs)

    Perspectives for integrating human and environmental risk assessment and synergies with socio-economic analysis

    Get PDF
    International audienceFor more than a decade, the integration of human and environmental risk assessment (RA) has become an attractive vision. At the same time, existing European regulations of chemical substances such as REACH (EC Regulation No. 1907/2006), the Plant Protection Products Regulation (EC regulation 1107/2009) and Biocide Regulation (EC Regulation 528/2012) continue to ask for sector-specific RAs, each of which have their individual information requirements regarding exposure and hazard data, and also use different methodologies for the ultimate risk quantification. In response to this difference between the vision for integration and the current scientific and regulatory practice, the present paper outlines five medium-term opportunities for integrating human and environmental RA, followed by detailed discussions of the associated major components and their state of the art. Current hazard assessment approaches are analyzed in terms of data availability and quality, and covering non-test tools, the integrated testing strategy (ITS) approach, the adverse outcome pathway (AOP) concept, methods for assessing uncertainty, and the issue of explicitly treating mixture toxicity. With respect to exposure, opportunities for integrating exposure assessment are discussed, taking into account the uncertainty, standardization and validation of exposure modeling as well as the availability of exposure data. A further focus is on ways to complement RA by a socio-economic assessment (SEA) in order to better inform about risk management options. In this way, the present analysis, developed as part of the EU FP7 project HEROIC, may contribute to paving the way for integrating, where useful and possible, human and environmental RA in a manner suitable for its coupling with SEA

    Optegnelser af presten Oluf Bentsen Mandal for aarene 1625-36.

    Get PDF
    Anthropogenic radionuclide inputs in the Loire estuary (French Atlantic coast) consist of radioactive releases from 14 nuclear reactors located along the Loire river basin, and of fallout from nuclear weapon tests and from the Tchernobyl accident. To estimate to what extent radionuclides associated with sediment accumulate in the estuary, three complementary approaches were used: field surveys, laboratory experiments and numerical modelling. Sampling of bottom sediments, water and suspended solids was carried out at 8 different dates over a 15 month-period. Analysis covered 14C, 90Sr, 3H, the naturally occurring gamma-emitters (uranium and thorium decay chains, 7Be and 40K), and the artificial gamma emitters (mainly cobalt and cesium isotopes). To gain information on the contamination history of the estuary, sediment cores were also collected at different locations inside and outside the estuarine zone. Processes of radionuclide transport and exchange between dissolved and particulate phases were included in a previously developed estuary specific 2D-hydrodynamic model. Equations of sorption and desorption kinetics were derived from laboratory experiments conducted at different salinities. Simulations carried out for two river discharge conditions (low summer flow, high winter flow) allowed to follow radionuclide desorption in the estuary. For long term simulations, a simplified model was developed. It provided estimates of the amount of radionuclides expelled out of the estuary under dissolved and particulate forms, of the transit time for both forms and of the variations in radionuclides concentrations in the fluid mud. Based on computed results and observations, contributions from different origins (natural, military, industrial, marine, continental) to the inventory of radioactivity in the estuary are presented

    Next generation physiologically based kinetic (NG-PBK) models in support of regulatory decision making

    Get PDF
    The fields of toxicology and chemical risk assessment seek to reduce, and eventually replace, the use of animals for the prediction of toxicity in humans. In this context, physiologically based kinetic (PBK) modelling based on in vitro and in silico kinetic data has the potential to a play significant role in reducing animal testing, by providing a methodology capable of incorporating in vitro human data to facilitate the development of in vitro to in vivo extrapolation of hazard information. In the present article, we discuss the challenges in: 1) applying PBK modelling to support regulatory decision making under the toxicology and risk-assessment paradigm shift towards animal replacement; 2) constructing PBK models without in vivo animal kinetic data, while relying solely on in vitro or in silico methods for model parameterization; and 3) assessing the validity and credibility of PBK models built largely using non-animal data. The strengths, uncertainties, and limitations of PBK models developed using in vitro or in silico data are discussed in an effort to establish a higher degree of confidence in the application of such models in a regulatory context. The article summarises the outcome of an expert workshop hosted by the European Commission Joint Research Centre (EC-JRC) – European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), on “Physiologically-Based Kinetic modelling in risk assessment – reaching a whole new level in regulatory decision-making” held in Ispra, Italy, in November 2016, along with results from an international survey conducted in 2017 and recently reported activities occurring within the PBK modelling field. The discussions presented herein highlight the potential applications of next generation (NG)-PBK modelling, based on new data streams. © 2018 The Author

    The application of Diffusive Gradients in Thin Films (DGT) for improved understanding of metal behaviour at marine disposal sites

    Get PDF
    Assessment of the effects of sediment metal contamination on biological assemblages and function remains a key question in marine management, especially in relation to disposal activities. However, the appropriate description of bioavailable metal concentrations within pore-waters has rarely been reported. Here, metal behaviour and availability at contaminated dredged material disposal sites within UK waters were investigated using Diffusive Gradient in Thin films (DGT). Three stations, representing contrasting history and presence of dredge disposal were studied. Depth profiles of five metals were derived using DGT probes as well as discrete analysis of total metal concentrations from sliced cores. The metals analysed were: iron and manganese, both relevant to sediment biogeochemistry; cadmium, nickel and lead, classified as priority pollutants. DGT time-integrated labile flux profiles of the metals display behaviour consistent with increasingly reduced conditions at depth and availability to DGT (iron and manganese), subsurface peaks and a potential sedimentary source to the water column related to the disposal activity (lead and nickel) and release to pore-water linked to decomposition of enriched phytodetritus (cadmium). DGT data has the potential to improve our current understanding of metal behaviour at impacted sites and is suitable as a monitoring tool. DGT data can provide information on metal availability and fluxes within the sediment at high depth-resolution (5 mm steps). Differences observed in the resulting profiles between DGT and conventional total metal analysis illustrates the significance of considering both total metals and a potentially labile fraction. The study outcomes can help to inform and improve future disposal site impact assessment, and could be complemented with techniques such as Sediment Profile Imagery for improved biologically relevance, spatial coverage and cost-effective monitoring and sampling of dredge material disposal sites. Additionally, the application of this technology could help improve correlative work on biological impacts under national and international auspices when linking biological effects to more biologically relevant metal concentrations
    corecore