396 research outputs found

    High pTp_{T} non-photonic electron production in pp+pp collisions at s\sqrt{s} = 200 GeV

    Get PDF
    We present the measurement of non-photonic electron production at high transverse momentum (pT>p_T > 2.5 GeV/cc) in pp + pp collisions at s\sqrt{s} = 200 GeV using data recorded during 2005 and 2008 by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured cross-sections from the two runs are consistent with each other despite a large difference in photonic background levels due to different detector configurations. We compare the measured non-photonic electron cross-sections with previously published RHIC data and pQCD calculations. Using the relative contributions of B and D mesons to non-photonic electrons, we determine the integrated cross sections of electrons (e++e−2\frac{e^++e^-}{2}) at 3 GeV/c<pT< c < p_T <~10 GeV/cc from bottom and charm meson decays to be dσ(B→e)+(B→D→e)dye∣ye=0{d\sigma_{(B\to e)+(B\to D \to e)} \over dy_e}|_{y_e=0} = 4.0±0.5\pm0.5({\rm stat.})±1.1\pm1.1({\rm syst.}) nb and dσD→edye∣ye=0{d\sigma_{D\to e} \over dy_e}|_{y_e=0} = 6.2±0.7\pm0.7({\rm stat.})±1.5\pm1.5({\rm syst.}) nb, respectively.Comment: 17 pages, 17 figure

    Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at sNN=200\sqrt{s_{NN}} = 200 GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, η/s\eta/s, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of η/s\eta/s that suggests that the produced medium has a small viscosity per unit entropy.Comment: 7 pages, 4 figures, STAR paper published in Phys. Lett.

    Centrality dependence of charged particle production at large transverse momentum in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm{NN}}} = 2.76 TeV

    Get PDF
    The inclusive transverse momentum (pTp_{\rm T}) distributions of primary charged particles are measured in the pseudo-rapidity range ∣η∣<0.8|\eta|<0.8 as a function of event centrality in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm{NN}}}=2.76 TeV with ALICE at the LHC. The data are presented in the pTp_{\rm T} range 0.15<pT<500.15<p_{\rm T}<50 GeV/cc for nine centrality intervals from 70-80% to 0-5%. The Pb-Pb spectra are presented in terms of the nuclear modification factor RAAR_{\rm{AA}} using a pp reference spectrum measured at the same collision energy. We observe that the suppression of high-pTp_{\rm T} particles strongly depends on event centrality. In central collisions (0-5%) the yield is most suppressed with RAA≈0.13R_{\rm{AA}}\approx0.13 at pT=6p_{\rm T}=6-7 GeV/cc. Above pT=7p_{\rm T}=7 GeV/cc, there is a significant rise in the nuclear modification factor, which reaches RAA≈0.4R_{\rm{AA}} \approx0.4 for pT>30p_{\rm T}>30 GeV/cc. In peripheral collisions (70-80%), the suppression is weaker with RAA≈0.7R_{\rm{AA}} \approx 0.7 almost independently of pTp_{\rm T}. The measured nuclear modification factors are compared to other measurements and model calculations.Comment: 17 pages, 4 captioned figures, 2 tables, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/284

    ϒ production in p–Pb collisions at √sNN=8.16 TeV

    Get PDF
    ϒ production in p–Pb interactions is studied at the centre-of-mass energy per nucleon–nucleon collision √sNN = 8.16 TeV with the ALICE detector at the CERN LHC. The measurement is performed reconstructing bottomonium resonances via their dimuon decay channel, in the centre-of-mass rapidity intervals 2.03 < ycms < 3.53 and −4.46 < ycms < −2.96, down to zero transverse momentum. In this work, results on the ϒ(1S) production cross section as a function of rapidity and transverse momentum are presented. The corresponding nuclear modification factor shows a suppression of the ϒ(1S) yields with respect to pp collisions, both at forward and backward rapidity. This suppression is stronger in the low transverse momentum region and shows no significant dependence on the centrality of the interactions. Furthermore, the ϒ(2S) nuclear modification factor is evaluated, suggesting a suppression similar to that of the ϒ(1S). A first measurement of the ϒ(3S) has also been performed. Finally, results are compared with previous ALICE measurements in p–Pb collisions at √sNN = 5.02 TeV and with theoretical calculations.publishedVersio

    Centrality Dependence Of The Pseudorapidity Density Distribution For Charged Particles In Pb-pb Collisions At √snn=2.76tev

    Get PDF
    7264/Mai61062

    Long-range Angular Correlations On The Near And Away Side In P-pb Collisions At √snn=5.02 Tev

    Get PDF
    7191/Mar294

    (Anti-)deuteron production in pp collisions at 1as=13TeV

    Get PDF
    The study of (anti-)deuteron production in pp collisions has proven to be a powerful tool to investigate the formation mechanism of loosely bound states in high-energy hadronic collisions. In this paper the production of (anti-)deuterons is studied as a function of the charged particle multiplicity in inelastic pp collisions at s=13 TeV using the ALICE experiment. Thanks to the large number of accumulated minimum bias events, it has been possible to measure (anti-)deuteron production in pp collisions up to the same charged particle multiplicity (d Nch/ d \u3b7 3c 26) as measured in p\u2013Pb collisions at similar centre-of-mass energies. Within the uncertainties, the deuteron yield in pp collisions resembles the one in p\u2013Pb interactions, suggesting a common formation mechanism behind the production of light nuclei in hadronic interactions. In this context the measurements are compared with the expectations of coalescence and statistical hadronisation models (SHM)

    Measurement of jet suppression in central Pb-Pb collisions at root s(NN)=2.76 TeV

    Get PDF
    The transverse momentum(p(T)) spectrum and nuclear modification factor (R-AA) of reconstructed jets in 0-10% and 10-30% central Pb-Pb collisions at root s(NN) = 2.76 TeV were measured. Jets were reconstructed using the anti-k(T) jet algorithm with a resolution parameter of R = 0.2 from charged and neutral particles, utilizing the ALICE tracking detectors and Electromagnetic Calorimeter (EMCal). The jet p(T) spectra are reported in the pseudorapidity interval of \eta(jet)\ 5 GeV/c to suppress jets constructed from the combinatorial background in Pb-Pb collisions. The leading charged particle requirement applied to jet spectra both in pp and Pb-Pb collisions had a negligible effect on the R-AA. The nuclear modification factor R-AA was found to be 0.28 +/- 0.04 in 0-10% and 0.35 +/- 0.04 in 10-30% collisions, independent of p(T), jet within the uncertainties of the measurement. The observed suppression is in fair agreement with expectations from two model calculations with different approaches to jet quenching. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V.Peer reviewe

    Multiplicity dependence of inclusive J/psi production at midrapidity in pp collisions at root s=13 TeV

    Get PDF
    Measurements of the inclusive J/psi yield as a function of charged-particle pseudorapidity density dN(ch)/d eta in pp collisions at root s = 13 TeV with ALICE at the LHC are reported. The J/psi meson yield is measured at midrapidity (vertical bar y vertical bar <0.9) in the dielectron channel, for events selected based on the charged-particle multiplicity at midrapidity (vertical bar eta vertical bar <1) and at forward rapidity (-3.7 <eta <-1.7 and 2.8 <eta <5.1); both observables are normalized to their corresponding averages in minimum bias events. The increase of the normalized J/psi yield with normalized dN(ch)/d eta is significantly stronger than linear and dependent on the transverse momentum. The data are compared to theoretical predictions, which describe the observed trends well, albeit not always quantitatively. (C) 2020 European Organization for Nuclear Research. Published by Elsevier B.V.Peer reviewe

    Event-plane-dependent Dihadron Correlations With Harmonic Vn Subtraction In Au + Au Collisions At S Nn =200 Gev

    Get PDF
    STAR measurements of dihadron azimuthal correlations (Δφ) are reported in midcentral (20-60%) Au+Au collisions at sNN=200 GeV as a function of the trigger particle's azimuthal angle relative to the event plane, φs=|φt-ψEP|. The elliptic (v2), triangular (v3), and quadratic (v4) flow harmonic backgrounds are subtracted using the zero yield at minimum (ZYAM) method. The results are compared to minimum-bias d+Au collisions. It is found that a finite near-side (|Δφ|π/2) correlation shows a modification from d+Au data, varying with φs. The modification may be a consequence of path-length-dependent jet quenching and may lead to a better understanding of high-density QCD. © 2014 American Physical Society.894DOE; U.S. Department of EnergyArsene, I., (2005) Nucl. Phys. A, 757, p. 1. , (BRAHMS Collaboration), () NUPABL 0375-9474 10.1016/j.nuclphysa.2005.02. 130;Back, B.B., (2005) Nucl. Phys. A, 757, p. 28. , (PHOBOS Collaboration), () NUPABL 0375-9474 10.1016/j.nuclphysa.2005.03. 084;Adams, J., (2005) Nucl. Phys. A, 757, p. 102. , (STAR Collaboration), () NUPABL 0375-9474 10.1016/j.nuclphysa.2005.03. 085;Adcox, K., (2005) Nucl. Phys. A, 757, p. 184. , (PHENIX Collaboration),. NUPABL 0375-9474 10.1016/j.nuclphysa.2005.03.086Heinz, U., Kolb, P.F., (2002) Nucl. Phys. A, 702, p. 269. , NUPABL 0375-9474 10.1016/S0375-9474(02)00714-5Wang, X.-N., Gyulassy, M., (1992) Phys. Rev. Lett., 68, p. 1480. , PRLTAO 0031-9007 10.1103/PhysRevLett.68.1480Adler, S., (2003) Phys. Rev. Lett., 91, p. 072301. , (PHENIX Collaboration), () PRLTAO 0031-9007 10.1103/PhysRevLett.91. 072301;Adams, J., (2003) Phys. Rev. Lett., 91, p. 072304. , (STAR Collaboration), () PRLTAO 0031-9007 10.1103/PhysRevLett.91.072304;Adler, C., (2003) Phys. Rev. Lett., 90, p. 082302. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.90.082302Adams, J., (2005) Phys. Rev. Lett., 95, p. 152301. , (STAR Collaboration), () PRLTAO 0031-9007 10.1103/PhysRevLett.95.152301;Aggarwal, M.M., (2010) Phys. Rev. C, 82, p. 024912. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.82.024912Adams, J., (2004) Phys. Rev. Lett., 93, p. 252301. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.93.252301Poskanzer, A.M., Voloshin, S.A., (1998) Phys. Rev. C, 58, p. 1671. , PRVCAN 0556-2813 10.1103/PhysRevC.58.1671Alver, B., (2008) Phys. Rev. C, 77, p. 014906. , PRVCAN 0556-2813 10.1103/PhysRevC.77.014906Feng, A., (2008), Ph.D. thesis, Institute of Particle Physics, CCNU, (unpublished);Konzer, J., (2013), Ph.D. thesis, Purdue University, (unpublished)Agakishiev, H., (STAR Collaboration), arXiv:1010.0690Ackermann, K.H., (2003) Nucl. Instrum. Meth., A499, p. 624. , (STAR Collaboration),. NIMAER 0168-9002 10.1016/S0168-9002(02)01960-5Ackermann, K.H., (1999) Nucl. Phys. A, 661, p. 681. , (STAR Collaboration),. NUPABL 0375-9474 10.1016/S0375-9474(99)85117-3Adams, J., (2004) Phys. Rev. Lett., 92, p. 112301. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.92.112301Borghini, N., Dinh, P.M., Ollitrault, J.Y., (2000) Phys. Rev. C, 62, p. 034902. , PRVCAN 0556-2813 10.1103/PhysRevC.62.034902Adams, J., (2005) Phys. Rev. C, 72, p. 014904. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.72.014904Abelev, B.I., (2009) Phys. Rev. C, 79, p. 034909. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.79.034909Bielcikova, J., (2004) Phys. Rev C, 69, p. 021901. , (R) () PRVCAN 0556-2813 10.1103/PhysRevC.69.021901;Konzer, J., Wang, F., (2009) Nucl. Instrum. Meth., A606, p. 713. , NIMAER 0168-9002 10.1016/j.nima.2009.05.011Mishra, A.P., (2008) Phys. Rev. C, 77, p. 064902. , PRVCAN 0556-2813 10.1103/PhysRevC.77.064902;Alver, B., Roland, G., (2010) Phys. Rev. C, 81, p. 054905. , PRVCAN 0556-2813 10.1103/PhysRevC.81.054905Alver, B., Roland, G., (2010) Phys. Rev. C, 82, p. 039903. , 0556-2813 10.1103/PhysRevC.82.039903Xu, J., Ko, C.M., (2011) Phys. Rev. C, 84, p. 014903. , PRVCAN 0556-2813 10.1103/PhysRevC.84.014903Petersen, H., (2010) Phys. Rev. C, 82, p. 041901. , PRVCAN 0556-2813 10.1103/PhysRevC.82.041901Takahashi, J., (2009) Phys. Rev. Lett., 103, p. 242301. , PRLTAO 0031-9007 10.1103/PhysRevLett.103.242301;Andrade, R.P.G., (2012) Phys. Lett. B, 712, p. 226. , PYLBAJ 0370-2693 10.1016/j.physletb.2012.04.044;Qian, W.L., (2013) Phys. Rev. C, 87, p. 014904. , PRVCAN 0556-2813 10.1103/PhysRevC.87.014904Schenke, B., Jeon, S., Gale, C., (2011) Phys. Rev. Lett., 106, p. 042301. , PRLTAO 0031-9007 10.1103/PhysRevLett.106.042301;Qiu, Z., Heinz, U.W., (2011) Phys. Rev. C, 84, p. 024911. , PRVCAN 0556-2813 10.1103/PhysRevC.84.024911;Song, H., (2011) Phys. Rev. Lett., 106, p. 192301. , PRLTAO 0031-9007 10.1103/PhysRevLett.106.192301;Schenke, B., Jeon, S., Gale, C., (2012) Phys. Rev. C, 85, p. 024901. , PRVCAN 0556-2813 10.1103/PhysRevC.85.024901;Schenke, B., Tribedy, P., Venugopalan, R., (2012) Phys. Rev. Lett., 108, p. 252301. , PRLTAO 0031-9007 10.1103/PhysRevLett.108.252301Adare, A., (2011) Phys. Rev. Lett., 107, p. 252301. , (PHENIX Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.107.252301Adamczyk, L., (2013) Phys. Rev. C, 88, p. 014904. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.88.014904Abelev, B.I., (2008) Phys. Rev. Lett., 101, p. 252301. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.101.252301Teaney, D., Yan, L., (2011) Phys. Rev. C, 83, p. 064904. , PRVCAN 0556-2813 10.1103/PhysRevC.83.064904Pandit, Y., (2013) J. Phys. Conf. Ser., 446, p. 012012. , (STAR Collaboration),. 1742-6596 10.1088/1742-6596/446/1/012012Ajitanand, N.N., (2005) Phys. Rev. C, 72, p. 011902. , PRVCAN 0556-2813 10.1103/PhysRevC.72.011902Agakishiev, G., (2012) Phys. Rev. C, 86, p. 064902. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.86.064902Adler, C., (2002) Phys. Rev. C, 66, p. 034904. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.66.034904Abelev, B.I., (2009) Phys. Rev. C, 80, p. 064912. , (STAR Collaboration), () PRVCAN 0556-2813 10.1103/PhysRevC.80.064912;Abelev, B.I., (2010) Phys. Rev. Lett., 105, p. 022301. , PRLTAO 0031-9007 10.1103/PhysRevLett.105.022301Adler, S.S., (2006) Phys. Rev. Lett., 97, p. 052301. , (PHENIX Collaboration), () PRLTAO 0031-9007 10.1103/PhysRevLett.97. 052301;Adare, A., (2008) Phys. Rev. C, 78, p. 014901. , (PHENIX Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.78.014901Stoecker, H., (2005) Nucl. Phys. A, 750, p. 121. , NUPABL 0375-9474 10.1016/j.nuclphysa.2004.12.074;Casalderrey-Solana, J., Shuryak, E.V., Teaney, D., (2005) J. Phys. Conf. Ser., 27, p. 22. , 1742-6588 10.1088/1742-6596/27/1/003;Ruppert, J., MĂŒller, B., (2005) Phys. Lett. B, 618, p. 123. , PYLBAJ 0370-2693 10.1016/j.physletb.2005.04.075Betz, B., (2010) Phys. Rev. Lett., 105, p. 222301. , PRLTAO 0031-9007 10.1103/PhysRevLett.105.222301;Ma, G.L., Wang, X.N., (2011) Phys. Rev. Lett., 106, p. 162301. , PRLTAO 0031-9007 10.1103/PhysRevLett.106.162301Abelev, B.I., (2009) Phys. Rev. Lett., 102, p. 052302. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.102.052302Adamczyk, L., (2014) Phys. Rev. Lett., 112, p. 122301. , (STAR Collaboration),. 10.1103/PhysRevLett.112.12230
    • 

    corecore