44 research outputs found
Recommended from our members
Arbuscular mycorrhizal communities respond to nutrient enrichment and plant invasion in phosphorusâlimited eucalypt woodlands
Arbuscular mycorrhizal fungi (AMF) facilitate ecosystem functioning through provision of plant hosts with phosphorus (P), especially where soil P is limiting. Changes in soil nutrient regimes are expected to impact AMF, but the direction of the impact may depend on context. We predicted that nitrogen (N)-only enrichment promotes plant invasions and exacerbates their P limitation, increasing the utility of AMF and promoting AMF diversity. We expected that enrichment with N, P and other nutrients similarly promotes plant invasions, but decreases the benefit and diversity of AMF because P is readily available for both native and exotic plants.
We tested these hypotheses in eucalypt woodlands of south-western Australia, that occur on soils naturally low in P. We evaluated AMF communities within three modified ground-layer states representing different types of nutrient enrichment and associated plant invasions. We compared these modified states to near-natural reference woodlands.
AMF richness varied across ground-layer states. The moderately invaded/N-enriched state showed the highest AMF richness, while the highly invaded/NP-enriched state showed the lowest AMF richness. The reference state and the weakly invaded/enriched state were intermediate. AMF richness and colonisation were higher in roots of exotic than native plant species.
AMF community composition differed among ground-layer states, with the highly invaded/NP-enriched state being most distinct. Distinctions among states were often driven by family-level patterns. Reference and moderately invaded/N-enriched states each supported distinct groups of zero-radius operational taxonomic units (zOTUs) in Acaulosporaceae, Gigasporaceae and Glomeraceae, whereas Gigasporaceae and Glomeraceae were nearly absent from the highly invaded/NP-enriched state. Further, Diversisporaceae and Glomeraceae were most diverse in the moderately invaded/N-enriched state.
Synthesis. Both the nature of soil nutrient enrichment and plant provenance matter for AMF. N-only enrichment of low-P soils increased AMF richness, likely due to the introduction of AMF-dependent exotic plant species and exacerbation of their P limitation. In contrast, multi-nutrient enrichment, decreased AMF richness potentially due to a decrease in host dependence on AMF, regardless of host provenance. The changes in AMF community composition with nutrient enrichment and plant invasion warrant further research into predicting the functional implications of these changes
First cryo-scanning electron microscopy images and X-ray microanalyses of mucoromycotinian fine root endophytes in vascular plants
Aims. Arbuscule-producing fine root endophytes (FRE) (previously incorrectly Glomus tenue) were recently placed within subphylum Mucoromycotina; the first report of arbuscules outside subphylum Glomeromycotina. Here, we aimed to estimate nutrient concentrations in plant and fungal structures of FRE and to test the utility of cryo-scanning electron microscopy (cryoSEM) for studying these fungi.
Methods. To do so, we used replicated cryoSEM and X-ray microanalysis of heavily colonized roots of Trifolium subterraneum.
Results. Intercellular hyphae and hyphae in developed arbuscules were consistently very thin; 1.35 ± 0.03 ”m and 0.99 ± 0.03 ”m in diameter, respectively (mean ± SE). Several intercellular hyphae were often adjacent to each other forming âhyphal ropesâ. Developed arbuscules showed higher phosphorus concentrations than senesced arbuscules and non-colonized structures. Senesced arbuscules showed greatly elevated concentrations of calcium and magnesium.
Conclusions. While uniformly thin hyphae and hyphal ropes are distinct features of FRE, the morphology of fully developed arbuscules, elevated phosphorus in fungal structures, and accumulation of calcium with loss of structural integrity in senesced arbuscules are similar to glomeromycotinian fungi. Thus, we provide evidence that FRE may respond to similar host-plant signals or that the host plant may employ a similar mechanism of association with FRE and AMF
Niche differentiation of Mucoromycotinian and Glomeromycotinian arbuscular mycorrhizal fungi along a 2-million-year soil chronosequence
Current literature suggests ecological niche differentiation between co-occurring Mucoromycotinian arbuscular mycorrhizal fungi (M-AMF) and Glomeromycotinian AMF (G-AMF), but experimental evidence is limited. We investigated the influence of soil age, water availability (wet and dry), and plant species (native Microlaena stipoides and exotic Trifolium subterraneum) on anatomical root colonisation and DNA profiles of M-AMF and G-AMF under glasshouse conditions. We grew seedlings of each species in soils collected from the four stages of a soil chronosequence, where pH decreases from the youngest to oldest stages, and phosphorus (P) is low in the youngest and oldest, but high in the intermediate stages. We scored the percentage of root length colonised and used DNA metabarcoding to profile fungal richness and community composition associated with treatment combinations. Soil age, water availability, and plant species were important influencers of root colonisation, although no M-AMF were visible following staining of M. stipoides roots. Soil age and host plant influenced fungal richness and community composition. However, response to soil age, potential host species, and water availability differed between M-AMF and G-AMF. Root colonisation of T. subterraneum by M-AMF and G-AMF was inversely correlated with soil P level. Community composition of M-AMF and G-AMF was structured by soil age and, to a lesser extent, plant species. Richness of M-AMF and G-AMF was negatively, and positively, correlated with available P, respectively. These findings are experimental evidence of ecological niche differentiation of M-AMF and G-AMF and invite further exploration into interactive effects of abiotic and biotic factors on their communities along successional trajectories
Evidence for niche differentiation in the environmental responses of co-occurring mucoromycotinian fine root endophytes and glomeromycotinian arbuscular mycorrhizal fungi
Fine root endophytes (FRE) were traditionally considered a morphotype of arbuscular mycorrhizal fungi (AMF), but recent genetic studies demonstrate that FRE belong within the subphylum Mucoromycotina, rather than in the subphylum Glomeromycotina with the AMF. These findings prompt enquiry into the fundamental ecology of FRE and AMF. We sampled FRE and AMF in roots of Trifolium subterraneum from 58 sites across temperate southern Australia. We investigated the environmental drivers of composition, richness, and root colonization of FRE and AMF by using structural equation modelling and canonical correspondence analyses. Root colonization by FRE increased with increasing temperature and rainfall but decreased with increasing phosphorus (P). Root colonization by AMF increased with increasing soil organic carbon but decreased with increasing P. Richness of FRE decreased with increasing temperature and soil pH. Richness of AMF increased with increasing temperature and rainfall but decreased with increasing soil aluminium (Al) and pH. Aluminium, soil pH, and rainfall were, in decreasing order, the strongest drivers of community composition of FRE; they were also important drivers of community composition of AMF, along with temperature, in decreasing order: rainfall, Al, temperature, and soil pH. Thus, FRE and AMF showed the same responses to some (e.g. soil P, soil pH) and different responses to other (e.g. temperature) key environmental factors. Overall, our data are evidence for niche differentiation among these co-occurring mycorrhizal associates
Global patterns in endemicity and vulnerability of soil fungi
Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. We found that the endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka, and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are predominantly vulnerable to drought, heat and land-cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests, and woodlands. We stress that more attention should be focused on the conservation of fungi, especially root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi in tropical regions as well as unicellular early-diverging groups and macrofungi in general. Given the low overlap between the endemicity of fungi and macroorganisms, but high conservation needs in both groups, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms
Global patterns in endemicity and vulnerability of soil fungi
Fungi are highly diverse organisms, which provide multiple ecosystem services.
However, compared with charismatic animals and plants, the distribution patterns and
conservation needs of fungi have been little explored. Here, we examined endemicity
patterns, global change vulnerability and conservation priority areas for functional
groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. We found that the endemicity of all fungi and most functional
groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa,
Sri Lanka, and New Caledonia, with a negligible island effect compared with plants
and animals. We also found that fungi are predominantly vulnerable to drought, heat
and land-cover change, particularly in dry tropical regions with high human population
density. Fungal conservation areas of highest priority include herbaceous wetlands,
tropical forests, and woodlands. We stress that more attention should be focused on
the conservation of fungi, especially root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi in tropical regions as well as unicellular early-diverging groups and
macrofungi in general. Given the low overlap between the endemicity of fungi and
macroorganisms, but high conservation needs in both groups, detailed analyses on
distribution and conservation requirements are warranted for other microorganisms
and soil organisms
Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
Sloan Digital Sky Survey IV: mapping the Milky Way, nearby galaxies, and the distant universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
Sloan Digital Sky Survey IV : mapping the Milky Way, nearby galaxies, and the distant universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z ~ 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z ~ 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
Recommended from our members
Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing
three major spectroscopic programs. The Apache Point Observatory Galactic
Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky
Way stars at high resolution and high signal-to-noise ratio in the
near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA)
survey is obtaining spatially-resolved spectroscopy for thousands of nearby
galaxies (median redshift of z = 0.03). The extended Baryon Oscillation
Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas
distributions between redshifts z = 0.6 and 3.5 to constrain cosmology using
baryon acoustic oscillations, redshift space distortions, and the shape of the
power spectrum. Within eBOSS, we are conducting two major subprograms: the
SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray
AGN and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey
(TDSS), obtaining spectra of variable sources. All programs use the 2.5-meter
Sloan Foundation Telescope at Apache Point Observatory; observations there
began in Summer 2014. APOGEE-2 also operates a second near-infrared
spectrograph at the 2.5-meter du Pont Telescope at Las Campanas Observatory,
with observations beginning in early 2017. Observations at both facilities are
scheduled to continue through 2020. In keeping with previous SDSS policy,
SDSS-IV provides regularly scheduled public data releases; the first one, Data
Release 13, was made available in July 2016