217 research outputs found

    An inverted virtual faculty development program for remote teaching: pilot for replication

    Get PDF
    Background: Due to the COVID 19 pandemic, all the universities worldwide are experiencing a paradigm shift to online learning. Baby boomers and Generation X need to cope with the challenging transformation, so an emerging need for a faculty development program was needed towards achieving the goal of that transformation. Objectives: To describe and assess an inverted virtual faculty development program (VFDP) that was designed and implemented for the first time in the school to equip educators with the necessary technology competencies for remote online learning. Methods: An interventional prospective study held in a university setting post need analysis conduction to prioritize the required technological skills for faculty members. The program was designed to integrate five essential skills needed to by faculty members to teach remotely. The intervention comprised attending five virtual sessions after watching a pre-distributed material, then evaluated using the Kirkpatrick model.Results: Almost 81% of faculty members completed the program and 80 % of participants were satisfied with the content of the program. There was a statistically significant difference between the perceived ability of the participants to share and record video lectures before and after the VFDP (p value <0.001). The percentage of the departments that applied the program components showed that 96% of them were able to record lectures. In addition, 80% of them were able to develop online quizzes. Conclusion: The inverted virtual faculty development program (VFDP) has supported the participating faculty in developing their needed technological competencies required to bridge the gap of remote teaching/learning

    Professional Memory CD4+ T Lymphocytes Preferentially Reside and Rest in the Bone Marrow

    Get PDF
    SummaryCD4+ T lymphocytes are key to immunological memory. Here we show that in the memory phase of specific immune responses, most of the memory CD4+ T lymphocytes had relocated into the bone marrow (BM) within 3–8 weeks after their generation—a process involving integrin α2. Antigen-specific memory CD4+ T lymphocytes highly expressed Ly-6C, unlike most splenic CD44hiCD62L− CD4+ T lymphocytes. In adult mice, more than 80% of Ly-6ChiCD44hiCD62L− memory CD4+ T lymphocytes were in the BM. In the BM, they associated to IL-7-expressing VCAM-1+ stroma cells. Gene expression and proliferation were downregulated, indicating a resting state. Upon challenge with antigen, they rapidly expressed cytokines and CD154 and efficiently induced the production of high-affinity antibodies by B lymphocytes. Thus, in the memory phase of immunity, memory helper T cells are maintained in BM as resting but highly reactive cells in survival niches defined by IL-7-expressing stroma cells

    IL-33 Receptor-Expressing Regulatory T Cells Are Highly Activated, Th2 Biased and Suppress CD4 T Cell Proliferation through IL-10 and TGFβ Release

    Get PDF
    Immunomodulatory Foxp3+ regulatory T cells (Tregs) form a heterogeneous population consisting of subsets with different activation states, migratory properties and suppressive functions. Recently, expression of the IL-33 receptor ST2 was shown on Tregs in inflammatory settings. Here we report that ST2 expression identifies highly activated Tregs in mice even under homeostatic conditions. ST2+ Tregs preferentially accumulate at non-lymphoid sites, likely mediated by their high expression of several chemokine receptors facilitating tissue homing. ST2+ Tregs exhibit a Th2-biased character, expressing GATA-3 and producing the Th2 cytokines IL-5 and IL-13 –especially in response to IL-33. Yet, IL-33 is dispensable for the generation and maintenance of these cells in vivo. Furthermore, ST2+ Tregs are superior to ST2− Tregs in suppressing CD4+ T cell proliferation in vitro independent of IL-33. This higher suppressive capacity is partially mediated by enhanced production and activation of the anti-inflammatory cytokines IL-10 and TGFβ. Thus, ST2 expression identifies a highly activated, strongly suppressive Treg subset preferentially located in non-lymphoid tissues. Here ST2+ Tregs may be well positioned to immediately react to IL-33 alarm signals. Their specific properties may render ST2+ Tregs useful targets for immunomodulatory therapies

    A guide to best practice in faculty development for health professions schools: a qualitative analysis

    Get PDF
    BACKGROUND: This is a practice guide for the evaluation tool specifically created to objectively evaluate longitudinal faculty development programs (FDP) using the “5×2 -D backward planning faculty development model”. It was necessary to create this tool as existing evaluation methods are designed to evaluate linear faculty development models with a specific endpoint. This backward planning approach is a cyclical model without an endpoint, consisting of 5 dynamic steps that are flexible and interchangeable, therefore can be a base for an evaluation tool that is objective and takes into account all the domains of the FDP in contrast to the existing, traditional, linear evaluation tools which focus on individual aspects of the program. The developed tool will target evaluation of longitudinal faculty development programs regardless of how they were planned. METHODOLOGY: Deductive qualitative grounded theory approach was used. Evaluation questions were generated and tailored based on the 5 × 2-D model followed by 2 Delphi rounds to finalize them. Based on the finalized evaluation questions from the results of the Delphi rounds, two online focus group discussions (FGDs) were conducted to deduce the indicators, data sources and data collection method. RESULTS: Based on the suggested additions, the authors added 1 new question to domains B, with a total of 42 modifications, such as wording changes or discarding or merging questions. Some domains received no comments, therefore, were not included in round 2. For each evaluation question, authors generated indicators, data sources and data collection methods during the FGD. CONCLUSION: The methodology used to develop this tool takes into account expert opinions. Comprehensiveness of this tool makes it an ideal evaluation tool during self-evaluation or external quality assurance for longitudinal FDP. After its validation and testing, this practice guide can be used worldwide, along with the provided indicators which can be quantified and used to suit the local context. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12909-022-03208-x

    Dissecting the dynamic transcriptional landscape of early T helper cell differentiation into Th1, Th2, and Th1/2 hybrid cells

    Get PDF
    Selective differentiation of CD4+ T helper (Th) cells into specialized subsets such as Th1 and Th2 cells is a key element of the adaptive immune system driving appropriate immune responses. Besides those canonical Th-cell lineages, hybrid phenotypes such as Th1/2 cells arise in vivo, and their generation could be reproduced in vitro. While master-regulator transcription factors like T-bet for Th1 and GATA-3 for Th2 cells drive and maintain differentiation into the canonical lineages, the transcriptional architecture of hybrid phenotypes is less well understood. In particular, it has remained unclear whether a hybrid phenotype implies a mixture of the effects of several canonical lineages for each gene, or rather a bimodal behavior across genes. Th-cell differentiation is a dynamic process in which the regulatory factors are modulated over time, but longitudinal studies of Th-cell differentiation are sparse. Here, we present a dynamic transcriptome analysis following Th-cell differentiation into Th1, Th2, and Th1/2 hybrid cells at 3-h time intervals in the first hours after stimulation. We identified an early bifurcation point in gene expression programs, and we found that only a minority of ~20% of Th cell-specific genes showed mixed effects from both Th1 and Th2 cells on Th1/2 hybrid cells. While most genes followed either Th1- or Th2-cell gene expression, another fraction of ~20% of genes followed a Th1 and Th2 cell-independent transcriptional program associated with the transcription factors STAT1 and STAT4. Overall, our results emphasize the key role of high-resolution longitudinal data for the characterization of cellular phenotypes.Peer Reviewe

    Long-lived virus-reactive memory T cells generated from purified cytokine-secreting T helper type 1 and type 2 effectors

    Get PDF
    Many vaccination strategies and immune cell therapies aim at increasing the numbers of memory T cells reactive to protective antigens. However, the differentiation lineage and therefore the optimal generation conditions of CD4 memory cells remain controversial. Linear and divergent differentiation models have been proposed, suggesting CD4 memory T cell development from naive precursors either with or without an effector-stage intermediate, respectively. Here, we address this question by using newly available techniques for the identification and isolation of effector T cells secreting effector cytokines. In adoptive cell transfers into normal, nonlymphopenic mice, we show that long-lived virus-specific memory T cells can efficiently be generated from purified interferon γ–secreting T helper (Th) type 1 and interleukin (IL)-4– or IL-10–secreting Th2 effectors primed in vitro or in vivo. Importantly, such effector-derived memory T cells were functional in viral challenge infections. They proliferated vigorously, rapidly modulated IL-7 receptor expression, exhibited partial stability and flexibility of their cytokine patterns, and exerted differential effects on virus-induced immunopathology. Thus, cytokine-secreting effectors can evade activation-induced cell death and develop into long-lived functional memory cells. These findings demonstrate the efficiency of linear memory T cell differentiation and encourage the design of vaccines and immune cell therapies based on differentiated effector T cells

    Single-Cell Transcriptomics of Regulatory T Cells Reveals Trajectories of Tissue Adaptation.

    Get PDF
    Non-lymphoid tissues (NLTs) harbor a pool of adaptive immune cells with largely unexplored phenotype and development. We used single-cell RNA-seq to characterize 35,000 CD4+ regulatory (Treg) and memory (Tmem) T cells in mouse skin and colon, their respective draining lymph nodes (LNs) and spleen. In these tissues, we identified Treg cell subpopulations with distinct degrees of NLT phenotype. Subpopulation pseudotime ordering and gene kinetics were consistent in recruitment to skin and colon, yet the initial NLT-priming in LNs and the final stages of NLT functional adaptation reflected tissue-specific differences. Predicted kinetics were recapitulated using an in vivo melanoma-induction model, validating key regulators and receptors. Finally, we profiled human blood and NLT Treg and Tmem cells, and identified cross-mammalian conserved tissue signatures. In summary, we describe the relationship between Treg cell heterogeneity and recruitment to NLTs through the combined use of computational prediction and in vivo validation

    Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor–neutralizing therapy in patients with inflammatory bowel disease

    Get PDF
    Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are complex chronic inflammatory conditions of the gastrointestinal tract that are driven by perturbed cytokine pathways. Anti-tumor necrosis factor-α (TNF) antibodies are mainstay therapies for IBD. However, up to 40% of patients are nonresponsive to anti-TNF agents, which makes the identification of alternative therapeutic targets a priority. Here we show that, relative to healthy controls, inflamed intestinal tissues from patients with IBD express high amounts of the cytokine oncostatin M (OSM) and its receptor (OSMR), which correlate closely with histopathological disease severity. The OSMR is expressed in nonhematopoietic, nonepithelial intestinal stromal cells, which respond to OSM by producing various proinflammatory molecules, including interleukin (IL)-6, the leukocyte adhesion factor ICAM1, and chemokines that attract neutrophils, monocytes, and T cells. In an animal model of anti-TNF-resistant intestinal inflammation, genetic deletion or pharmacological blockade of OSM significantly attenuates colitis. Furthermore, according to an analysis of more than 200 patients with IBD, including two cohorts from phase 3 clinical trials of infliximab and golimumab, high pretreatment expression of OSM is strongly associated with failure of anti-TNF therapy. OSM is thus a potential biomarker and therapeutic target for IBD, and has particular relevance for anti-TNF-resistant patients

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Circulating and Tissue-Resident CD4+ T Cells With Reactivity to Intestinal Microbiota Are Abundant in Healthy Individuals and Function Is Altered During Inflammation.

    Get PDF
    BACKGROUND & AIMS: Interactions between commensal microbes and the immune system are tightly regulated and maintain intestinal homeostasis, but little is known about these interactions in humans. We investigated responses of human CD4+ T cells to the intestinal microbiota. We measured the abundance of T cells in circulation and intestinal tissues that respond to intestinal microbes and determined their clonal diversity. We also assessed their functional phenotypes and effects on intestinal resident cell populations, and studied alterations in microbe-reactive T cells in patients with chronic intestinal inflammation. METHODS: We collected samples of peripheral blood mononuclear cells and intestinal tissues from healthy individuals (controls, n = 13-30) and patients with inflammatory bowel diseases (n = 119; 59 with ulcerative colitis and 60 with Crohn's disease). We used 2 independent assays (CD154 detection and carboxy-fluorescein succinimidyl ester dilution assays) and 9 intestinal bacterial species (Escherichia coli, Lactobacillus acidophilus, Bifidobacterium animalis subsp lactis, Faecalibacterium prausnitzii, Bacteroides vulgatus, Roseburia intestinalis, Ruminococcus obeum, Salmonella typhimurium, and Clostridium difficile) to quantify, expand, and characterize microbe-reactive CD4+ T cells. We sequenced T-cell receptor Vβ genes in expanded microbe-reactive T-cell lines to determine their clonal diversity. We examined the effects of microbe-reactive CD4+ T cells on intestinal stromal and epithelial cell lines. Cytokines, chemokines, and gene expression patterns were measured by flow cytometry and quantitative polymerase chain reaction. RESULTS: Circulating and gut-resident CD4+ T cells from controls responded to bacteria at frequencies of 40-4000 per million for each bacterial species tested. Microbiota-reactive CD4+ T cells were mainly of a memory phenotype, present in peripheral blood mononuclear cells and intestinal tissue, and had a diverse T-cell receptor Vβ repertoire. These cells were functionally heterogeneous, produced barrier-protective cytokines, and stimulated intestinal stromal and epithelial cells via interleukin 17A, interferon gamma, and tumor necrosis factor. In patients with inflammatory bowel diseases, microbiota-reactive CD4+ T cells were reduced in the blood compared with intestine; T-cell responses that we detected had an increased frequency of interleukin 17A production compared with responses of T cells from blood or intestinal tissues of controls. CONCLUSIONS: In an analysis of peripheral blood mononuclear cells and intestinal tissues from patients with inflammatory bowel diseases vs controls, we found that reactivity to intestinal bacteria is a normal property of the human CD4+ T-cell repertoire, and does not necessarily indicate disrupted interactions between immune cells and the commensal microbiota. T-cell responses to commensals might support intestinal homeostasis, by producing barrier-protective cytokines and providing a large pool of T cells that react to pathogens
    corecore