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Selective differentiation of CD4+ T helper (Th) cells into specialized subsets

such as Th1 and Th2 cells is a key element of the adaptive immune system

driving appropriate immune responses. Besides those canonical Th-cell

lineages, hybrid phenotypes such as Th1/2 cells arise in vivo, and their

generation could be reproduced in vitro . While master-regulator

transcription factors like T-bet for Th1 and GATA-3 for Th2 cells drive and

maintain differentiation into the canonical lineages, the transcriptional

architecture of hybrid phenotypes is less well understood. In particular, it has

remained unclear whether a hybrid phenotype implies a mixture of the effects

of several canonical lineages for each gene, or rather a bimodal behavior across

genes. Th-cell differentiation is a dynamic process in which the regulatory

factors are modulated over time, but longitudinal studies of Th-cell

differentiation are sparse. Here, we present a dynamic transcriptome analysis

following Th-cell differentiation into Th1, Th2, and Th1/2 hybrid cells at 3-h

time intervals in the first hours after stimulation. We identified an early

bifurcation point in gene expression programs, and we found that only a

minority of ~20% of Th cell-specific genes showed mixed effects from both

Th1 and Th2 cells on Th1/2 hybrid cells. While most genes followed either Th1-

or Th2-cell gene expression, another fraction of ~20% of genes followed a Th1

and Th2 cell-independent transcriptional program associated with the
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transcription factors STAT1 and STAT4. Overall, our results emphasize the key

role of high-resolution longitudinal data for the characterization of

cellular phenotypes.
KEYWORDS

T helper cell, cell differentiation, time-course transcriptomics, regression analysis,
lineage commitment
Introduction

The differentiation of CD4+ T helper (Th) cells into effector

cell lineages associated with specific immunological functions is

a critical event at the onset of an immune response. Individual

Th-cell lineages such as Th1 and Th2 cells can be discriminated

by expression of the master-regulator transcription factors T-bet

and GATA-3 and by production of signature cytokines such as

IFN-g and IL-4, respectively (1, 2). The differentiation process

from naïve Th cells into the various effector cell lineages spans

multiple days, and the underlying transcriptional network

governing the decision processes changes dynamically

throughout differentiation (3, 4). The gene-regulatory

networks for Th-cell subset-specific differentiation are quite

complex and can be modulated by cell–cell interactions (5).

Th-cell phenotypes are not limited to the canonical Thx

phenotypes (Th1, Th2, Th17, among others) but also include

stable hybrid forms such as Th1/2 cells, which co-express T-bet

and GATA-3 as well as IFN-g and IL-4 (6–8).

In previous studies, combining experimental work with

mathematical methods has been a successful approach to gain

quantitative insights into Th-cell dynamics and decision-making

(9–15). Notably, it was found that although signal integration via

cytokines is transient and stochastic (16, 17), the resulting

decisions regarding the generation of T-cell phenotypes,

including selective cytokine secretion, are remarkably stable

even in quantitative terms at the single-cell level (10).

Nevertheless, assessing the complex interplay of different

regulatory elements shaping the phenotypic Th-cell landscape

has been exacerbated by the limited availability of kinetic data,

which are difficult to obtain experimentally because of small cell

numbers occurring in vivo especially at early time points. Indeed,

experimental and theoretical studies have underlined the value

of time-course information for the quantitative understanding of

dynamic processes such as T-cell differentiation (4, 18–25).

A still unresolved question in Th-cell differentiation is the

lineage identity of mixed cell phenotypes such as Th1/2 hybrid

cells. Those cells stably co-producing T-bet and GATA-3 have

initially been discovered to arise in mouse models of parasite

infections (7), their development was successfully recapitulated
02
in vitro (7, 17), and they are a common observation in recently

available single-cell phenotyping data sets (8, 26). Other non-

conventional Th cells comprise Tfh-like PD-1hiCXCR5-,

‘peripheral helper’ T cells in rheumatoid arthritis (27), and

Th17 cells in a ‘poised type 2 state’ in the context of tissue

injury (28). How do hybrid Th-cell lineages relate to the

conventional Thx lineages? In particular, do hybrid cells result

from mixed or superimposed gene expression programs of two

or more conventional lineages, for instance as a combination of

genes driven by T-bet and GATA-3 transcription factors in the

case of Th1/2 hybrid cells? Or, do they rather evolve toward

independent gene expression programs during differentiation?

To address such questions, and to derive a comprehensive

picture of transcriptional dynamics during Th-cell differentiation,

we performed a high-resolution kinetic analysis of gene expression

changes with a 3-h time interval for the very first time points. We

closely followed Th-cell differentiation into Th1 and Th2 cells,

complemented by Th0 conditions and a Th1/2 hybrid phenotype,

each in two independent kinetic transcriptomics experiments. We

developed a quantitative workflow to carefully characterize the

temporal expression patterns of kinetic genes and to

analyze differences between cell types arising in the kinetic

transcriptional program. We found a critical lineage bifurcation

point approximately ~24 h after antigen stimulation. Notably, we

identified a set of genes that show independent behavior in the

Th1/2 hybrid cells and are associated with STAT1/4-dependent

gene regulation, rather than following T-bet– or GATA-3–

dependent transcriptional programs.
Results

High-resolution kinetic gene expression
analysis reveals a critical bifurcation
point early during differentiation

Previous experiments have shown that Th cells can exhibit

distinct and mixed phenotypes based on the combination of

polarizing cytokine signals. Here, we used an established in vitro

protocol combining T-cell receptor (TCR) stimulation and
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polarizing cytokines, to induce Th-cell differentiation toward

Th1, Th2, and Th1/2 hybrid cells, supplemented by a Th0

condition with TCR stimulation and blocking antibodies for

IFN-g, IL-12, and IL-4 (Figure 1A) (7). The obtained Th-cell

lineages were analyzed by flow cytometry, indicating lineage-

specific expression profiles of key cytokines and transcription

factors, as expected (Figure 1B; Figure S1). In particular, Th1

cells showed a dominant T-bet and IFN-g expression profile,
Frontiers in Immunology 03
Th2 cells showed GATA-3 and IL-4 expression, and Th1/2

hybrid cells showed a mixed phenotype with a stochastic

cytokine expression profile in line with previous studies (7,

10). Th-cell transcriptomes were obtained at 10 time points

over a time course of 120 h, the first three time points in 3-h

intervals. Two independent experiments were performed, with

very similar overall data quality and gene expression kinetics

(Figure S2). For many genes that are known to have an
B C

D

E F

G

A

FIGURE 1

A high-resolution time course of Th-cell differentiation. (A) Experimental setup. Th-cell subsets were induced by polarizing signals in vitro, and
gene expression profiles were obtained at 10 time points between 0 and 120 h after activation. (B) Flow-cytometric characterization of Th-cell
subsets at day 5 after activation with polarizing conditions as described in (A). Normalized geometric mean indices for T-bet and GATA-3
expression are shown. Geometric mean intensities for IFN-g- and IL-4-positive cells are indicated in bold. (C) Gene-expression profiles of four
groups of genes (top to bottom): Th1-related, Th2-related, Tfh, and Th17-related, and other important Th cell-related genes. (D) Kinetics of
master regulator transcription factors and signature cytokines for individual CD4+ T-cell subsets. Shown are normalized expression intensities as
fold change relative to the first measured timepoint (0 h). (E) Principal component (PC) analysis of the differentiation time course. Cell subsets
are indicated by marker shape. Time of measurement is indicated by color. (F) Numbers and overlap of kinetic genes between cell subsets.
(G) Evolution of PC1 over time. Shown is the difference of PC values with respect to the Th0 condition. Genes with high correlation between
subsets were removed (bottom) or kept for comparison (top).
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important role in Th-cell differentiation, we observed strong up-

or downregulation within the time window of the experiment in

a cell-type-specific manner (Figure 1C). As expected, genes of

the well-known Th1 and Th2 signature cytokines and

transcription factors, Tbx21, Gata3, Ifng, and Il4, showed a

cell-type-specific early response in the corresponding

polarizing conditions (Figure 1D). Further, the hybrid Th1/2

phenotype featured elevated expression levels of both Tbx21 and

Gata3, while Th0 cells showed Tbx21 dynamics similar to Th2

cells and Gata3 dynamics similar to Th1 cells.

To derive a first overview on general characteristics of the

obtained data, we performed principal component analysis

(PCA) and hierarchical clustering (Figure 1E; Figures S2B, E).

Differences between the analyzed cell types increased gradually,

and time was the variable accounting for most of the variance

(Figure 1E). That is in line with our result of 3,944 kinetic genes

out of 12,479 expressed genes obtained by a combination of

statistical tests (cf. Methods, Identification of kinetic genes and

temporal patterns) (Figure 1F). Next, to analyze the kinetics of

cell differentiation, we removed genes that were highly correlated

across all four subsets from the data set (Figure S3A). In a PCA

on that reduced data set, differences between cell fates were far

more pronounced than in the original data set (Figure 1G; Figure

S3B). The differences between cell fates started increasing after

approximately 24 h and reached a stable maximum at ~day 3,
Frontiers in Immunology 04
which was consistent across all first four principal components

(Figures S3C, D). Intriguingly, the Th1/2 hybrid cell type showed

a deviating transient behavior in higher-order principal

components (Figures S3C, D), already pointing to qualitative

differences between the kinetics of individual Th-cell subsets

which we shall explore in more detail below.

In summary, our explorative analysis of kinetic gene

expression during Th-cell differentiation revealed a bifurcation

between individual cell types between day 1 and day 3,

suggesting a critical time window for Th-cell differentiation

around day 1 after TCR stimulation.
Early Th-cell differentiation
features three major patterns of kinetic
gene expression

Having obtained an overview about the global

transcriptomic changes during Th-cell differentiation, we next

analyzed the genes with significant changes over time in more

detail. For this purpose, we first used the established maSigPro

(29) software package to cluster the kinetic genes of each subset

(Figures 2A and S4A) (cf. Methods, Identification of kinetic genes

and temporal patterns). We identified three dominating

temporal patterns or kinetic clusters (Figures 2B; Figure S4B):
B C

D

EA

FIGURE 2

Early Th-cell differentiation features three major patterns of kinetic gene expression. (A) Expression heatmap for kinetic genes. (B) Normalized
expression kinetics of the three identified kinetic gene expression clusters, shown as averages over all genes and all cell types contained in each
cluster. (C) Quantification of the numbers of identified kinetic genes across cell types within each kinetic cluster. (D) Gene classification as non-
kinetic or kinetic including cluster association, for the four groups of Th cell-related genes introduced in Figure 1C. (E) Pathway enrichment
analysis for genes uniquely assigned to kinetic clusters C1–C3. Pathways were pooled from REACTOME and Msigdb:Hallmark data bases; for a
list of all enriched pathways see Table S1.
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fast and transient upregulation (C1), delayed and stable

upregulation (C2), and stable downregulation (C3). Cluster

separation was less convincing when setting the number of

clusters to 4 or 5 (Figures S4C, D). The three kinetic clusters

occurred in comparable abundance across all cell types, cluster

C1 occurring with slightly lower frequency compared to clusters

C2 and C3 (Figure 2C). Many well-known Th1 and Th2 cell fate-

inducing genes were identified as kinetic and were associated

with kinetic clusters in a cell-type-specific manner (Figure 2D).

In contrast, genes associated with other Th-cell lineages such as

Rorc and Il17a (Th17) or Pdcd1 (Tfh) did not show a significant

kinetic response according to our criteria. Finally, we performed

pathway overrepresentation analysis for the kinetic genes

associated with each cluster (Figure 2E; Table S1). We found

that the stably upregulated dynamics of cluster C2 were strongly

associated with cell-cycle activity and metabolism, while the

transient dynamics of cluster C1 showed enrichment for

regulation of transcription and translation. Moreover, we

identified early responses for type I interferons and IL-2

signaling in cluster C2, while other immune cell-related

signaling activity was found throughout all clusters including

the downregulated genes in cluster C3.
A refined selection procedure identifies
quantitative and qualitative differences in
kinetic gene expression between
Th-cell subtypes

Based on the described set of kinetic genes, we next analyzed

differences in the dynamics between cell types. To this end, we

used a combination of the kinetic differentially expressed genes

(DEG) as derived from the maSigPro workflow (quantitative

DEG) and an additional filtering step to exclude genes with

strong pairwise correlation over time (qualitative DEG)

(Figure 3A)(Methods, Selection of quantitative and qualitative

differentially expressed genes). The latter approach allowed us to

select for genes that not only show distinct expression levels over

several time points but also show dissimilar trends over time

(Figure 3B). This approach is analogous to a “Volcano plot”

representation, which is often employed for selection of genes

with high fold increase in static gene expression analysis

workflows. Finally, we added a category “cluster switch” based

on whether a gene was assigned to a different kinetic cluster (cf.

Figure 2B) for each comparison of cell types.

The set of kinetic DEG derived from our data set contained

706 quantitative DEG, out of which 205 are also qualitative DEG,

out of which 111 also are subject to cluster switch, as exemplified

for the Th1 vs. Th2 comparison (Figure 3C; Table S2). A visual

inspection of this set of genes showed clearly distinguishable

patterns between Th1 and Th2 cells (Figure 3D). Apart from

Th1 vs. Th2 DEG, we found the highest numbers of DEG in the

Th1 vs. Th1/2 and Th2 vs. Th0 comparisons (Figure 3C), as
Frontiers in Immunology 05
expected based on PCA analysis (cf. Figure 1E). Notably, we

consistently identified DEG that were shared between the Th1

vs. Th1/2 and Th2 vs. Th1/2 comparisons, across quantitative,

qualitative, and cluster-switching DEG (Figure 3E), suggesting

that not all parts of the Th1/2 cell transcriptome directly follow

either the Th1- or Th2-cell gene expression program. As in the

kinetic cluster analysis above, we found that many of the well-

known Th1 and Th2 cell-associated genes such as Gata3, Ifng,

Eomes, and Il4 were identified as DEG, supplemented by other

genes such as Nkg7 and Bst2 (Figure 3B; Figure S4E, Table S2).

Pathway overrepresentation analysis (Figure 3F; Table S1)

revealed strong enrichment of interferon-related pathways (IF)

across all comparisons, except for the Th1 vs. Th0 contrast,

which did not contain any enrichment for the pathways we

considered. T-cell differentiation (T) and most of the pathways

accounting for chemokine signaling and generic inflammatory

patterns (I) were moderately enriched in the Th1 vs. Th2 and

Th2 vs. Th0 comparisons only. The broader “cytokine” category

(C) contained highly enriched pathways across all comparisons

but also pathways lacking significant hits for the Th1 vs. Th1/2

and Th2 vs. Th1/2 comparisons.

Overall, this high-resolution kinetic data set allowed for a

fine-tuned approach to kinetic gene expression analysis in terms

of quantitative, qualitative, and kinetic cluster-switching DEG,

yielding a quantifiable classification suitable for direct

assessment of the role of each gene in lineage-specific Th-cell

differentiation programs.
Hybrid Th1/2 cells are enriched for a
STAT1/4-dependent gene expression
program that is independent of Th1 and
Th2 cell-specific gene regulation

Our analysis based on the identified qualitative DEG

consistently revealed an overlap of Th1 vs. Th1/2 and Th2 vs.

Th1/2 DEG (Figure 3E). That suggests that the majority of the

kinetic transcripts in Th1/2 hybrid cells follows either the Th1-

or the Th2-cell gene expression program, while a substantial

fraction of the transcriptome differs from that of both Th1 and

Th2 cells. We reasoned that such transcriptional kinetics could

result from either “superposition”, which is a combined effect of

Th1- and Th2-cell types of gene regulation, or from an

“independent” gene expression program, which is an

expression pattern that cannot be attributed to Th1 or Th2

cells nor to their combination.

To further investigate the relation of Th1/2 hybrid cells to

Th1 and Th2 cells, we restricted the analysis to the set of Th1 vs.

Th2 DEG, thereby focusing on genes that are highly related to

differential Th-cell fate development (Figure 4A). Next, we set up

a linear regression model to describe the transcriptional program

of Th1/2 hybrid cells as a function of Th1- and Th2-cell gene

expression. The resulting regression coefficients bTh1 and bTh2
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for each gene span a plane in which additive and subtractive

effects relating to Th1 and Th2 cell gene expression are directly

accessible (Figure S5A). We grouped all considered Th1 vs. Th2

DEG into “Th1-like”, “Th2-like”, “Superposition”, and

“Independent” categories, based on the significance of the bTh1
and bTh2 regression fitting (Figures 4B, C; Table S3)(cf. Methods,

Linear model analysis). As expected based on the PCA and DEG

analysis results, a large fraction of genes in the Th1/2 hybrid cell
Frontiers in Immunology 06
expression profile was classified as “Th2-like”, again indicating

the overall similarity of the Th1/2 hybrid phenotype to the Th2

cell type (Figure 4C). Another large fraction of genes was

classified as “Superposition” or “Independent”, and quite

remarkably, we found those two categories at almost the

same frequency.

To further evaluate the described types of genes in context of

the overall transcriptional program, we performed enrichment
B

C

D

E

F

A

FIGURE 3

A refined selection procedure identifies quantitative and qualitative differences in kinetic gene expression. (A) Workflow illustration. We
employed a combination of regression fitting in maSigPro to derive quantitative differentially expressed genes (DEG), followed by a correlation
filter to identify qualitative DEG and by an analysis of switching of kinetic clusters between cell types. (B) Correlation volcano plots based on the
workflow in (A). Genes are categorized as kinetic (gray), quantitative DEG (black), or qualitative DEG (red). See Methods for details. (C) Numbers
of qualitative and quantitative DEG obtained for each comparison of cell types. Brackets indicate the numbers of kinetic cluster switches.
(D) Expression heatmap for all qualitative DEG exhibiting kinetic cluster switches in at least one comparison of cell types, as indicated on the
left. (E) Venn diagrams of quantitative (left) and qualitative (right) DEG shared between Th1 or Th2 cells and Th1/2 hybrid cells. (F) Pathway
enrichment analysis of DEG for all pairwise comparisons between cell types. Pathways were pooled from REACTOME, GO:BP, Msigdb:C2:
WikiPathways, and Msigdb:C3:TFT databases. Shown are pathways with significant enrichment in at least two comparisons.
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analysis with regard to both general regulatory gene sets as well

as Th cell-specific gene sets obtained from publicly available

Chip-Seq data (30–34). For the Th cell-specific gene sets, we

focused on the transcription factors GATA-3, T-bet, and

STAT1/4/6, which are known to be key regulators of Th-cell

differentiation. As expected, in the overall Th1 vs. Th2 contrast,

the Th1 cell-related genes were enriched for T-bet, STAT4, and

Th1-cell specific GATA-3 targets, while the Th2 cell-related

genes were enriched for STAT6 and Th2-cell-specific GATA-3

and targets (Figure 4D, left panel). Interestingly, we found

enrichment for STAT4 binding in Th2-related genes, which

could be due to inhibitory signals of STAT4 target genes during

Th2 differentiation. In the Th1-like and Th2-like genes of the

Th1/2 hybrid cells, we also found strong enrichment for T-bet

and GATA-3 target genes, respectively (Figure 4D, right panel).

The superposition genes showed strong enrichment in the

GATA-3 target genes of Th1 cells. In contrast, in the

independent genes of the Th1/2 hybrid cells, we identified a
Frontiers in Immunology 07
significant signature of STAT1 and STAT4 target genes that is

absent in all other types of Th1/2 hybrid cell genes. This pattern

of a dominating STAT-dependent transcriptional program for

Independent genes and dominating GATA-3-dependent

regulation for Superposition genes was consistent for our two

independent replicates and was robust to changes in the applied

thresholds for statistical analysis (Figures S5B–E). In contrast,

analysis of unbiased gene sets derived from public data bases did

not result in any significant gene sets (Figure S6).

Taken together, we found that the majority of genes in the

Th1/2 hybrid cells closely follow either the Th1- or Th2-cell

transcriptional programs, but about 20% of the remaining genes

showed independent behavior rather than being explained by a

combination of Th1- and Th2-dependent effects. In contrast to

the expression profiles of Th1 and Th2 cells, which were

dominated by T-bet and GATA-3 control, those independent

genes in Th1/2 hybrid cells were significantly enriched for

STAT1 and STAT4 target genes.
B C

D

A

FIGURE 4

Superposition and independence of genes in Th1/2 hybrid cells. (A) Workflow sketch. Based on the identified qualitative Th1 vs. Th2 DEG (see
Figure 3C), similarity of genes to the expression profile of Th1/2 hybrid cells was assessed by a linear regression model. (B) Time courses of
representative genes, and (C) quantification of gene classification into the four different categories. (D) Enrichment analysis using published
transcription factor target gene sets (see text). Left: Analysis of upregulated genes in Th1 (Th2) cells, which are taken as Th1 vs. Th2 DEG with
expression values higher (lower) in Th1 compared to Th2 cells. Right: Analysis of the Th1/2 hybrid transcriptional profile along the gene
categories obtained in (A–C).
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Discussion

The commitment of Th cells to a specific effector state is one

of the key decision-making processes at the beginning of an

immune reaction and has far-reaching consequences regarding

the type and strength of the response. That decision can have

severe consequences in the context of diseases including

autoimmune disorders (35, 36), cancer (37), or viral infections

including SARS-CoV-2 (38). Here, kinetic gene expression

analysis at high temporal resolution especially in the very early

phase of cell differentiation allowed us to derive a full picture of

the transcriptional landscape during Th1, Th2, and Th1/2 cell

differentiation, and to achieve a detailed classification of the

kinetically changing genes. We could pinpoint a critical time

window at ~24 h after TCR stimulation, where the lineages start

to show divergent behavior, and we provide detailed information

regarding kinetic patterning of genes within and between Th-cell

effector subtypes.

Recently, high-content single-cell technologies such as

CyTOF and single-cell sequencing have allowed deep insights

into the rich and previously unforeseen diversity of the

phenotypic space of effector Th cells, which can cover the full

spectrum between and around the conventional Th1, Th2, Th17,

etc., cells (8, 26, 39, 40). Furthermore, non-conventional Th-cell

phenotypes have been discovered for instance in the contexts of

rheumatoid arthritis and tissue injury (27, 28). Such findings

have raised the question whether immune cell phenotypes

should be regarded as a continuous landscape rather than a set

of discrete states (40). This question cannot be answered solely

based on static data, which describes heterogeneity but does not

give any information regarding the mechanism and the origin of

that heterogeneity. Previous longitudinal studies of Th-cell

differentiation have provided valuable insights into the

regulation of Th-cell differentiation, for example in uncovering

regulatory networks during Th17 differentiation (19) and

describing the kinetics of Th1- and Th2-cell differentiation

(20, 21). However, we found that the available data sets are

lacking the high time resolution especially at the onset of Th1-

and Th2-cell differentiation that is necessary to derive a full

picture of differential gene-expression dynamics, and time-

course transcriptomics of a mixed phenotype such as Th1/2

hybrid cells were still missing in the literature.

To study the differentiation kinetics of both the conventional

Th1 and Th2 cells and the non-conventional Th1/2 hybrid cell

lineage in detail, we started from ex vivo sorted naïve cells and

performed carefully controlled generation of Th1, Th2, and

hybrid Th1/2 cells in vitro. The generated Th1/2 hybrid cells

showed a mixed phenotype (Figure 1B), in which nearly all cells

were double-positive for the transcription factors T-bet and

GATA-3. The frequencies of double-positive cytokine-

producing Th1/2 cells were in line with synergistic regulation
Frontiers in Immunology 08
by T-bet and GATA-3 of stochastic cytokine production in these

cells: for instance, the frequency of IL-4-producing cells within

IFN-g-producing cells is 2.43/(2.43 + 3.52)=41%, and thus

higher than the total frequency of 29.8%+2.4%=32.2% of IL-4-

producing Th1/2 cells. In line with our previous studies

indicating stable generation of hybrid Th1/2 cells in vivo (7,

10), those data point to a well-defined lineage identity for Th1/2

hybrid cells, although more detailed single-cell studies of those

cells will be needed to assess their heterogeneity.

Here, we performed detailed time-course transcriptomics in

all three cell types. That data allowed us to directly compare the

changes of individual genes between the hybrid cells and the

related conventional Th1 and Th2 cells over the full time course

of Th-cell differentiation. After explorative analysis by

hierarchical clustering and PCA, in a first step we analyzed

kinetic DEG by statistical methods analogous to previous work

by Aijo et al. (20), but here employing a much higher time

resolution of 3-h intervals in the first 12 h after differentiation

onset. In addition, in a second step, we employed kinetic

correlation analysis as a surrogate for quantitative expression

changes, and we suggest to use such computation of

“quantitative DEG” analogously to expression fold changes

that are routinely used in so-called volcano plots in static

transcriptomics analysis.

We found that despite the co-expression of T-bet and

GATA-3 in the Th1/2 hybrid cells, the majority of genes

showed “bi-modal” behavior and closely followed either the

Th1 or the Th2 cell type dynamics. Only a fraction of ~20% of

genes showed the expected “in-between” behavior, that is, a

superposition of the Th1- and Th2-dependent effects. An equal

portion of again ~20% of genes showed an independent

behavior, which means the temporal evolution of those genes

could not be attributed to either Th1 or Th2 kinetic patterns or

the combination of both. Notably, we found that the

independent genes in the Th1/2 hybrid cells do not follow the

otherwise dominant signature of T-bet or GATA-3 target gene

enrichment but rather are enriched for STAT1- and STAT4-

dependent gene regulation. Further research is required to derive

a full, quantitative understanding of this complex and

intertwined gene-regulatory network.

Taken together, our analysis revealed a substantial

commitment of the hybrid Th1/2-cell lineage to the

corresponding conventional, polarizing Th1- and Th2-cell

lineages; nevertheless, we also identified fractions of the gene

expression program accounting for independent or intermediate

states. This suggests that the question of a continuous versus

discrete gene expression landscape of Th-cell lineages depends

on the individual gene or gene set under consideration. Here,

deep time-course transcriptomic profiling generated a resolution

allowing for such detailed analysis of the phenotypic identity

among closely related immune cell types.
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Materials and methods

Mice

Balb/c mice were bred under specific pathogen-free

conditions at the Charite, Berlin. All animal experiments were

performed in accordance with the German animal protection

with permission from the local veterinary offices.
Cell culture and in vitro differentiation

Cells were isolated and cultured as previously described (7).

Briefly, naïve CD4+ CD62Lhi T cells were isolated from pooled

spleen and lymph node cells of 5–8-week-old Balb/c mice using a

two-step magnetic sorting strategy (MultiSort Kit, Miltenyi

Biotec). T cells were cultured in RPMI 1640+GlutaMax-I

supplemented with 10% (v/v) FCS (Gibco), penicillin (100 U/

ml; Gibco), streptomycin (100 µg/ml; Gibco), and ß-

mercaptoethanol (50 ng/ml; Sigma). Cultures were prepared

by stimulation with plate-bound 2.5 µg/ml anti-CD3ϵ (145-

2C11) and 3 µg/ml soluble anti-CD28 (37.51, both from BD

Biosciences). For Th1 differentiation, 10 ng/ml IL-12 (R&D

Systems) and 10 µg/ml anti–IL-4 (11B11) were added. For Th2

differentiation, 30 ng/ml IL-4 (R&D Systems), 10 µg/ml anti–IL-

12 (C17.8), and 10 µg/ml anti–IFN-g (AN18.17.24) were added.
Hybrid Th1/2 cells were cultured with 10 ng/ml IL-12 and 30 ng/

ml IL-4. Th0 cells were generated under neutral conditions with

anti–IL-12, anti–IFN-g, and anti–IL-4. Cell cultures were

transferred to a new plate, split on day 2, and analyzed at day

5. Transcription factor and cytokine stainings were performed as

previously described (7). T-bet and GATA-3 protein amounts

were analyzed using FoxP3 staining buffer set (eBioscience)

according to the manufacturer’s instructions. Briefly, cells were

stained with anti-CD4 (RM4–5) followed by fixation with 1×

Fixation/Permeabilization buffer and intracellular staining with

PE-conjugated anti–T-bet (4B10) and Alexa-647–conjugated

anti–GATA-3 (TWAJ, both from eBioscience) in 1×

permeabi l izat ion buffer . Cel l s were washed in 1×

permeabilization buffer and analyzed by FACS.
Microarrays and data processing

Illumina microarrays (Illumina Mouse Sentrix-6) were used

to profile T-cell gene expression under polarizing conditions at

10 time points. Data were background-corrected, quantile-

normalized, and log2-transformed. As an additional filtering

step, we selected only probes whose expression was above the

median expression across all groups and timepoints for at least

one condition. Afterward, we selected only probes that had gene

annotations for Entrez Gene ID, RefSeq ID, and gene symbol,
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resulting in the analysis of 18,284 probes (out of 46,089),

matching to 12,479 expressed genes.
Identification of kinetic genes and
temporal patterns

To identify kinetic genes, we first ran MaSigPro (29) on

individual CD4+ T-cell subsets to only consider time as an

explanatory variable in the MaSigPro regression model.

Additionally, we considered genes as kinetic that had a two-

fold increase compared to time 0 at two consecutive time points.

To identify temporal patterns, we employed hierarchical

clustering separately for each cell type based on the respective

set of identified kinetic genes. As a distance metric, we used

gene–gene correlation analogous to the default clustering option

employed in the MaSigPro package. The resulting dendrogram

was cut at a prescribed number of clusters (Figure S5).
Selection of quantitative and qualitative
differentially expressed genes

To evaluate differences between individual groups such as Th1

vs. Th2, we first selected the union of all kinetic genes, i.e., all genes

that had previously been identified as kinetic in at least one cell type.

For this set of genes, we employed the MaSigPro workflow on all

groups combined, thus considering time and group identity (Th1/

Th2/Th12/Th0) as explanatory variables. The workflow consists of

two steps that both employ regression models: first, significant

genes are identified based on an F-test for nested models, and for

those genes significant regression coefficients are identified in a

stepwise fashion. Based on the first step, p-values are provided

which indicate whether a gene was detected as differentially

expressed in any comparison. Out of this set of significant genes,

the second step allows to identify significant profile differences for

individual comparisons, which we here named “quantitative DEG”.

As a next step, we computed for each gene the kinetic correlation

using pairwise comparisons between cell types across all time

points. Reasoning that a high correlation indicates a similar

transcriptomic trajectory, we defined a correlation index 1-r,

where r is the Pearson correlation coefficient. Thus, genes with

differential kinetics and low correlation are assigned high

correlation indices. Based on the correlation index, we added an

additional filtering step and identified all DEG with correlation

index greater than 0.3 between cell types as “qualitative DEG”

(Figure 3A–C).
Pathway analysis

For pathway analysis, gene sets were pooled from the public

REACTOME, GO:BP, Msigdb:Hallmark, and Msigdb:C23:
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Wikipathways databases.We excluded gene sets with less than three

or more than 1,000 genes. Pathway overrepresentation analysis was

performed by applying a hypergeometric test on gene sets of all

databases combined after background correction. All enrichment

analyses were conducted using the ClusterProfiler package in R.
Linear model analysis

We used the following model to describe the expression for a

gene i expressed in cell type j as a function of Th1 and Th2

expression: Yi,j=bi,Th1Yi,Th1 + bi,Th2Yi,Th2 + ϵ. Here Yi,j represents

the gene expression for cell type j ϵ {Th0,Th1/2} , and YTh1(YTh2)

the gene expression of Th1 and Th2, respectively. The

coefficients bTh1 and bTh2 denote the contribution of the

respective cells to explaining the expression for Yi,j. Fitting the

model to each gene of the Th1vTh2 qualitative DEG allowed

classification into the categories Th1-like, Th2-like,

Superposition, and Independent, based on significance of the

regression fit coefficients bTh1 and bTh2 (see Figure 4A and Figure

S4A). Of note, some fits showed a mixed combination of positive

and negative coefficients, which would indicate a combined

effect of negative and positive regulation. However, in all those

cases the negative coefficient was not significant.
Statistics and availability of
computer code

The p-values derived from maSigPro or other methods were

corrected for multiple-testing using the Benjamini–Hochberg

method, if applicable. The resulting false discovery rate (FDR) or

simple p-value was regarded significant at a significance level of

0.05, except for pathway enrichment analysis, where we accepted

values of FDR<0.1. The R-scripts developed for kinetic gene

expression analysis are deposited at https://github.com/burt-

sysbio/CD4_timecourse_transcriptomics.
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