37 research outputs found

    Explicit processing of verbal and spatial features during letter-location binding modulates oscillatory activity of a fronto-parietal network.

    Get PDF
    The present study investigated the binding of verbal and spatial features in immediate memory. In a recent study, we demonstrated incidental and asymmetrical letter-location binding effects when participants attended to letter features (but not when they attended to location features) that were associated with greater oscillatory activity over prefrontal and posterior regions during the retention period. We were interested to investigate whether the patterns of brain activity associated with the incidental binding of letters and locations observed when only the verbal feature is attended differ from those reflecting the binding resulting from the controlled/explicit processing of both verbal and spatial features. To achieve this, neural activity was recorded using magnetoencephalography (MEG) while participants performed two working memory tasks. Both tasks were identical in terms of their perceptual characteristics and only differed with respect to the task instructions. One of the tasks required participants to process both letters and locations. In the other, participants were instructed to memorize only the letters, regardless of their location. Time–frequency representation of MEG data based on the wavelet transform of the signals was calculated on a single trial basis during the maintenance period of both tasks. Critically, despite equivalent behavioural binding effects in both tasks, single and dual feature encoding relied on different neuroanatomical and neural oscillatory correlates. We propose that enhanced activation of an anterior–posterior dorsal network observed in the task requiring the processing of both features reflects the necessity for allocating greater resources to intentionally process verbal and spatial features in this task

    Word Processing differences between dyslexic and control children

    Get PDF
    BACKGROUND: The aim of this study was to investigate brain responses triggered by different wordclasses in dyslexic and control children. The majority of dyslexic children have difficulties to phonologically assemble a word from sublexical parts following grapheme-to-phoneme correspondences. Therefore, we hypothesised that dyslexic children should mainly differ from controls processing low frequent words that are unfamiliar to the reader. METHODS: We presented different wordclasses (high and low frequent words, pseudowords) in a rapid serial visual word (RSVP) design and performed wavelet analysis on the evoked activity. RESULTS: Dyslexic children had lower evoked power amplitudes and a higher spectral frequency for low frequent words compared to control children. No group differences were found for high frequent words and pseudowords. Control children had higher evoked power amplitudes and a lower spectral frequency for low frequent words compared to high frequent words and pseudowords. This pattern was not present in the dyslexic group. CONCLUSION: Dyslexic children differed from control children only in their brain responses to low frequent words while showing no modulated brain activity in response to the three word types. This might support the hypothesis that dyslexic children are selectively impaired reading words that require sublexical processing. However, the lacking differences between word types raise the question if dyslexic children were able to process the words presented in rapid serial fashion in an adequate way. Therefore the present results should only be interpreted as evidence for a specific sublexical processing deficit with caution

    Does EEG activity during painful stimulation mirror more closely the noxious stimulus intensity or the subjective pain sensation?

    Get PDF
    Background: Many researchers have tried to investigate pain by studying brain responses. One method used to investigate pain-related brain responses is continuous electroencephalography (EEG). The objective of the current study is to add on to our understanding of EEG responses during pain, by differentiation between EEG patterns indicative of (i) the noxious stimulus intensity and (ii) the subjective pain sensation. Methods: EEG was recorded during the administration of tonic experimental pain, consisting of six minutes of contact heat applied to the leg via a thermode. Two stimuli above pain threshold, one at pain threshold and two non-painful stimuli were administered. Thirty-six healthy participants provided a subjective pain rating during thermal stimulation. Relative EEG power was calculated for the frequency bands alpha1, alpha2, beta1, beta2, delta, and theta. Results: Whereas EEG activity could not be predicted by stimulus intensity (except in one frequency band), subjective pain sensation could significantly predict differences in EEG activity in several frequency bands. An increase in the subjective pain sensation was associated with a decrease in alpha2, beta1, beta2 as well as in theta activity across the midline electrodes. Conclusion: The subjective experience of pain seems to capture unique variance in EEG activity above and beyond what is captured by noxious stimulus intensity

    Sequence learning by action, observation and action observation

    No full text
    The serial reaction time (SRT) task was used to compare learning of a complex sequence by action (participants responded to sequential stimuli), by observation (participants watched but did not respond to sequential stimuli), and by action-observation (participants watched an expert model responding to sequential stimuli). Each of these groups was compared with an untrained control group. Experiment 1 indicated that both observation and action-observation were sufficient to support learning of a 12-item second-order conditional (SOC) sequence. Experiment 2 confirmed these findings, and showed that, as indexed by reaction time (RT), the extent of learning by observation and by action-observation was comparable to that of action-based learning. Using a recognition test, Experiment 2 and 3 also provided evidence that, whereas learning by stimulus observation was explicit, learning by actionobservation was implicit. These findings are consistent with a connection between motor systems and implicit learning, but do not support the hypothesis that overt action is necessary for implicit learning. © 2005 The British Psychological Society

    Rhythmic context influences the auditory evoked potentials of musicians and nonmusicians

    No full text
    Contains fulltext : 64594.pdf (publisher's version ) (Closed access)In this study, we investigated how rhythms are processed in the brain by measuring both behaviourally obtained ratings and auditory evoked potentials (AEPs) from the EEG. We presented probe beats on seven positions within a test bar. Two bars of either a duple- or triple meter rhythm preceded probe beats. We hypothesised that sequential processing would lead to meter effects at the 1/3 and 1/2 bar positions, whereas hierarchical processing would lead to context effects on the 1/3, 1/2 and 2/3 bar positions. We found that metric contexts affected behavioural ratings. This effect was more pronounced for rhythmic experts. In addition, both the AEP P3a and P3b component could be identified. Though metric context affected the P3a amplitudes, group effects were less clear. We found that the AEP P3a component is sensitive to violation of temporal expectancies. In addition, behavioural data and P3a correlation coefficients (CCs) suggest that temporal patterns are processed sequentially in nonmusicians but are processed in a hierarchical way in rhythmic experts
    corecore