3,504 research outputs found

    A Combinatorial Bit Bang Leading to Quaternions

    Get PDF
    This paper describes in detail how (discrete) quaternions - ie. the abstract structure of 3-D space - emerge from, first, the Void, and thence from primitive combinatorial structures, using only the exclusion and co-occurrence of otherwise unspecified events. We show how this computational view supplements and provides an interpretation for the mathematical structures, and derive quark structure. The build-up is emergently hierarchical, compatible with both quantum mechanics and relativity, and can be extended upwards to the macroscopic. The mathematics is that of Clifford algebras emplaced in the homology-cohomology structure pioneered by Kron. Interestingly, the ideas presented here were originally developed by the author to resolve fundamental limitations of existing AI paradigms. As such, the approach can be used for learning, planning, vision, NLP, pattern recognition; and as well, for modelling, simulation, and implementation of complex systems, eg. biological.Comment: 23 pages, 4 figure

    Towards explaining the speed of kk-means

    Get PDF
    The kk-means method is a popular algorithm for clustering, known for its speed in practice. This stands in contrast to its exponential worst-case running-time. To explain the speed of the kk-means method, a smoothed analysis has been conducted. We sketch this smoothed analysis and a generalization to Bregman divergences

    Minimum-weight Cycle Covers and Their Approximability

    Get PDF
    A cycle cover of a graph is a set of cycles such that every vertex is part of exactly one cycle. An L-cycle cover is a cycle cover in which the length of every cycle is in the set L. We investigate how well L-cycle covers of minimum weight can be approximated. For undirected graphs, we devise a polynomial-time approximation algorithm that achieves a constant approximation ratio for all sets L. On the other hand, we prove that the problem cannot be approximated within a factor of 2-eps for certain sets L. For directed graphs, we present a polynomial-time approximation algorithm that achieves an approximation ratio of O(n), where nn is the number of vertices. This is asymptotically optimal: We show that the problem cannot be approximated within a factor of o(n). To contrast the results for cycle covers of minimum weight, we show that the problem of computing L-cycle covers of maximum weight can, at least in principle, be approximated arbitrarily well.Comment: To appear in the Proceedings of the 33rd Workshop on Graph-Theoretic Concepts in Computer Science (WG 2007). Minor change

    On Approximating Multi-Criteria TSP

    Get PDF
    We present approximation algorithms for almost all variants of the multi-criteria traveling salesman problem (TSP). First, we devise randomized approximation algorithms for multi-criteria maximum traveling salesman problems (Max-TSP). For multi-criteria Max-STSP, where the edge weights have to be symmetric, we devise an algorithm with an approximation ratio of 2/3 - eps. For multi-criteria Max-ATSP, where the edge weights may be asymmetric, we present an algorithm with a ratio of 1/2 - eps. Our algorithms work for any fixed number k of objectives. Furthermore, we present a deterministic algorithm for bi-criteria Max-STSP that achieves an approximation ratio of 7/27. Finally, we present a randomized approximation algorithm for the asymmetric multi-criteria minimum TSP with triangle inequality Min-ATSP. This algorithm achieves a ratio of log n + eps.Comment: Preliminary version at STACS 2009. This paper is a revised full version, where some proofs are simplifie

    Distributed Computation as Hierarchy

    Full text link
    This paper presents a new distributed computational model of distributed systems called the phase web that extends V. Pratt's orthocurrence relation from 1986. The model uses mutual-exclusion to express sequence, and a new kind of hierarchy to replace event sequences, posets, and pomsets. The model explicitly connects computation to a discrete Clifford algebra that is in turn extended into homology and co-homology, wherein the recursive nature of objects and boundaries becomes apparent and itself subject to hierarchical recursion. Topsy, a programming environment embodying the phase web, is available from www.cs.auc.dk/topsy.Comment: 16 pages, 3 figure

    Improved Smoothed Analysis of the k-Means Method

    Get PDF
    The k-means method is a widely used clustering algorithm. One of its distinguished features is its speed in practice. Its worst-case running-time, however, is exponential, leaving a gap between practical and theoretical performance. Arthur and Vassilvitskii (FOCS 2006) aimed at closing this gap, and they proved a bound of \poly(n^k, \sigma^{-1}) on the smoothed running-time of the k-means method, where n is the number of data points and σ\sigma is the standard deviation of the Gaussian perturbation. This bound, though better than the worst-case bound, is still much larger than the running-time observed in practice. We improve the smoothed analysis of the k-means method by showing two upper bounds on the expected running-time of k-means. First, we prove that the expected running-time is bounded by a polynomial in nkn^{\sqrt k} and σ1\sigma^{-1}. Second, we prove an upper bound of k^{kd} \cdot \poly(n, \sigma^{-1}), where d is the dimension of the data space. The polynomial is independent of k and d, and we obtain a polynomial bound for the expected running-time for k,dO(logn/loglogn)k, d \in O(\sqrt{\log n/\log \log n}). Finally, we show that k-means runs in smoothed polynomial time for one-dimensional instances.Comment: To be presented at the 20th ACM-SIAM Symposium on Discrete Algorithms (SODA 2009

    Variations on a Theme: A Bibliography on Approaches to Theorem Proving Inspired From Satchmo

    Get PDF
    This articles is a structured bibliography on theorem provers, approaches to theorem proving, and theorem proving applications inspired from Satchmo, the model generation theorem prover developed in the mid 80es of the 20th century at ECRC, the European Computer- Industry Research Centre. Note that the bibliography given in this article is not exhaustive

    Bisimplicial edges in bipartite graphs

    Get PDF
    Bisimplicial edges in bipartite graphs are closely related to pivots in Gaussian elimination that avoid turning zeroes into non-zeroes. We present a new deterministic algorithm to nd such edges in bipartite graphs. The expected time complexity of our new algorithm is O(n2logn)O(n^2 \log n) on random bipartite graphs in which each edge is present with a fixed probability p, a polynomial improvement over the fastest algorithm found in the existing literature

    Approximation Algorithms for Multi-Criteria Traveling Salesman Problems

    Full text link
    In multi-criteria optimization problems, several objective functions have to be optimized. Since the different objective functions are usually in conflict with each other, one cannot consider only one particular solution as the optimal solution. Instead, the aim is to compute a so-called Pareto curve of solutions. Since Pareto curves cannot be computed efficiently in general, we have to be content with approximations to them. We design a deterministic polynomial-time algorithm for multi-criteria g-metric STSP that computes (min{1 +g, 2g^2/(2g^2 -2g +1)} + eps)-approximate Pareto curves for all 1/2<=g<=1. In particular, we obtain a (2+eps)-approximation for multi-criteria metric STSP. We also present two randomized approximation algorithms for multi-criteria g-metric STSP that achieve approximation ratios of (2g^3 +2g^2)/(3g^2 -2g +1) + eps and (1 +g)/(1 +3g -4g^2) + eps, respectively. Moreover, we present randomized approximation algorithms for multi-criteria g-metric ATSP (ratio 1/2 + g^3/(1 -3g^2) + eps) for g < 1/sqrt(3)), STSP with weights 1 and 2 (ratio 4/3) and ATSP with weights 1 and 2 (ratio 3/2). To do this, we design randomized approximation schemes for multi-criteria cycle cover and graph factor problems.Comment: To appear in Algorithmica. A preliminary version has been presented at the 4th Workshop on Approximation and Online Algorithms (WAOA 2006

    Proving Finite Satisfiability of Deductive Databases

    Get PDF
    It is shown how certain refutation methods can be extended into semi-decision procedures that are complete for both unsatisfiability and finite satisfiability. The proposed extension is justified by a new characterization of finite satisfiability. This research was motivated by a database design problem: Deduction rules and integrity constraints in definite databases have to be finitely satisfiabl
    corecore