10 research outputs found

    Comparison of the vascular exotic flora in continental islands: Sardinia (Italy) and Balearic Islands (Spain)

    Get PDF
    [EN] This paper provides a comparison of the vascular exotic flora of Sardinia and that of the Balearic Islands, both territories belonging to the Western Mediterranean biogeographic subregion. The study has recorded 531 exotic taxa in Sardinia (18.8% of the total flora) while 360(19%) in the Balearic Islands; 10 are new to Sardinia (3 of which for Italy) and 29 to the Balearic Islands. The alien flora of Sardinia is included in 99 families; Fabaceae is the richest (49 taxa), followed by Poaceae (33) and Asteraceae (31) while in the Balearic Islands in 90 families, with a predominance of Fabaceae (32), Asteraceae (31) and Poaceae (27). The comparison of the biological spectra reveals that in Sardinia phanerophytes are the most represented in Sardinia and therophytes in the Balearic Islands. A detailed analysis shows that most of the exotic taxa (246) are shared by both territories with a clear dominance of neophytes rather than archaeophytes. A study of the geographical origin shows supremacy of the American element over the Mediterranean. The majority of introduced exotic taxa are a result of intentional human introductions (76% SA, 77% BL), mainly for ornamental use (43% SA, 45% BL). The most occupied habitats are the semi-natural, agricultural and synanthropic for both territories, but attending to invasive plants, coastal habitats in Sardinia and wetlands in the Balearic Islands are the most sensitive. A part of the work deals with the causes of fragility and low resilience of the different habitats.[ES] Se presenta un estudio comparativo de la flora vascular exótica de Cerdeña y de las Baleares, dos sistemas insulares pertenecientes a la subregión biogeográfica Mediterránea Occidental. En Cerdeña se han contabilizado 531 táxones exóticos (18,8% del total de su flora), mientras que en las Baleares 360 (19%), siendo 10 citas nuevas para Cerdeña (3 de las cuales para Italia) y 29 para Baleares. La flora exótica de Cerdeña está incluida en 99 familias, y Fabaceae es la más rica (49 táxones), seguida por Poaceae (33) y Asteraceae (31), frente a 90 familias para las Baleares, con predominio de Fabaceae (32), Asteraceae (31) y Poaceae (27). Se han encontrado diferencias respecto a los tipos biológicos, con un predominio de los fanerófitos en Cerdeña y de los terófitos en las Baleares. Un análisis detallado muestra que buena parte de estos táxones (246) son compartidos por ambos territorios, así como una dominancia de los neófitos frente a los arqueófitos. Respecto al origen geográfico, ambos territorios presentan una preeminencia del elemento americano sobre el mediterráneo. En referencia a las vías de introducción, la mayor parte de los táxones ha sido introducida por parte del hombre de forma intencionada (76% SA, 77% BL) en particular para uso ornamental (43% SA, 45% BL). Los hábitats más afectados son los seminaturales, agrícolas y sinantrópicos en ambos territorios, aunque atendiendo a la flora invasora, son los litorales los más sensibles en Cerdeña y los humedales en Baleares. Una parte del trabajo aborda las causas de la fragilidad y baja resiliencia de los diferentes hábitats.Podda, L.; Fraga Arguimbau, P.; Mayoral García-Berlanga, O.; Mascia, F.; Bacchetta, G. (2010). Comparación de la flora exótica vascular en sistemas de islas continentales: Cerdeña (Italia) y Baleares (España). Anales del Jardín Botánico de Madrid. 67(2):157-176. doi:10.3989/ajbm.2251S157176672Mack, R. N., Simberloff, D., Mark Lonsdale, W., Evans, H., Clout, M., & Bazzaz, F. A. (2000). BIOTIC INVASIONS: CAUSES, EPIDEMIOLOGY, GLOBAL CONSEQUENCES, AND CONTROL. Ecological Applications, 10(3), 689-710. doi:10.1890/1051-0761(2000)010[0689:bicegc]2.0.co;2Madon*, O., & Médail, F. (1997). Plant Ecology, 129(2), 189-199. doi:10.1023/a:1009759730000Mansion, G., Rosenbaum, G., Schoenenberger, N., Bacchetta, G., Rosselló, J. A., & Conti, E. (2008). Phylogenetic Analysis Informed by Geological History Supports Multiple, Sequential Invasions of the Mediterranean Basin by the Angiosperm Family Araceae. Systematic Biology, 57(2), 269-285. doi:10.1080/10635150802044029MILBAU, A., & STOUT, J. C. (2008). Factors Associated with Alien Plants Transitioning from Casual, to Naturalized, to Invasive. Conservation Biology, 22(2), 308-317. doi:10.1111/j.1523-1739.2007.00877.xO’Dowd, D. J., Green, P. T., & Lake, P. S. (2003). Invasional «meltdown» on an oceanic island. Ecology Letters, 6(9), 812-817. doi:10.1046/j.1461-0248.2003.00512.xOlesen, J. M., Eskildsen, L. I., & Venkatasamy, S. (2002). Invasion of pollination networks on oceanic islands: importance of invader complexes and endemic super generalists. Diversity Distributions, 8(3), 181-192. doi:10.1046/j.1472-4642.2002.00148.xPauchard, A., Cavieres, L. A., & Bustamante, R. O. (2004). Comparing alien plant invasions among regions with similar climates: where to from here? Diversity and Distributions, 10(5-6), 371-375. doi:10.1111/j.1366-9516.2004.00116.xPyšek, P., Richardson, D. M., Rejmánek, M., Webster, G. L., Williamson, M., & Kirschner, J. (2004). Alien plants in checklists and floras: towards better communication between taxonomists and ecologists. TAXON, 53(1), 131-143. doi:10.2307/4135498Randall, J. M., Morse, L. E., Benton, N., Hiebert, R., Lu, S., & Killeffer, T. (2008). The Invasive Species Assessment Protocol: A Tool for Creating Regional and National Lists of Invasive Nonnative Plants that Negatively Impact Biodiversity. Invasive Plant Science and Management, 1(1), 36-49. doi:10.1614/ipsm-07-020.1REASER, J. K., MEYERSON, L. A., CRONK, Q., DE POORTER, M., ELDREGE, L. G., GREEN, E., … VAIUTU, L. (2007). Ecological and socioeconomic impacts of invasive alien species in island ecosystems. Environmental Conservation, 34(2), 98-111. doi:10.1017/s0376892907003815REICHARD, S. H., & WHITE, P. (2001). Horticulture as a Pathway of Invasive Plant Introductions in the United States. BioScience, 51(2), 103. doi:10.1641/0006-3568(2001)051[0103:haapoi]2.0.co;2Richardson, D. M., & Pyšek, P. (2006). Plant invasions: merging the concepts of species invasiveness and community invasibility. Progress in Physical Geography: Earth and Environment, 30(3), 409-431. doi:10.1191/0309133306pp490prRichardson, D. M., Pysek, P., Rejmanek, M., Barbour, M. G., Panetta, F. D., & West, C. J. (2000). Naturalization and invasion of alien plants: concepts and definitions. Diversity Distributions, 6(2), 93-107. doi:10.1046/j.1472-4642.2000.00083.xRosenbaum, G., Lister, G. S., & Duboz, C. (2002). Reconstruction of the tectonic evolution of the western Mediterranean since the Oligocene. Journal of the Virtual Explorer, 08. doi:10.3809/jvirtex.2002.00053Sanz-Elorza, M., Mateo, R. G., & Bernardo, F. G. (2008). The historical role of agriculture and gardening in the introduction of alien plants in the western Mediterranean. Plant Ecology, 202(2), 247-256. doi:10.1007/s11258-008-9474-2Schippers, P., van Groenendael, J. M., Vleeshouwers, L. M., & Hunt, R. (2001). Herbaceous plant strategies in disturbed habitats. Oikos, 95(2), 198-210. doi:10.1034/j.1600-0706.2001.950202.xSchnitzler, A., Hale, B. W., & Alsum, E. M. (2007). Examining native and exotic species diversity in European riparian forests. Biological Conservation, 138(1-2), 146-156. doi:10.1016/j.biocon.2007.04.010Speranza, F., Villa, I. M., Sagnotti, L., Florindo, F., Cosentino, D., Cipollari, P., & Mattei, M. (2002). Age of the Corsica–Sardinia rotation and Liguro–Provençal Basin spreading: new paleomagnetic and Ar/Ar evidence. Tectonophysics, 347(4), 231-251. doi:10.1016/s0040-1951(02)00031-8Suehs, C. M., Affre, L., & Médail, F. (2003). Invasion dynamics of two alien Carpobrotus (Aizoaceae) taxa on a Mediterranean island: I. Genetic diversity and introgression. Heredity, 92(1), 31-40. doi:10.1038/sj.hdy.6800374Towns, D. R., & Ballantine, W. J. (1993). Conservation and restoration of New Zealand Island ecosystems. Trends in Ecology & Evolution, 8(12), 452-457. doi:10.1016/0169-5347(93)90009-eVila, M., Tessier, M., Suehs, C. M., Brundu, G., Carta, L., Galanidis, A., … Hulme, P. E. (2006). Local and regional assessments of the impacts of plant invaders on vegetation structure and soil properties of Mediterranean islands. Journal of Biogeography, 33(5), 853-861. doi:10.1111/j.1365-2699.2005.01430.xVITOUSEK, P. M., WALKER, L. R., WHITEAKER, L. D., MUELLER-DOMBOIS, D., & MATSON, P. A. (1987). Biological Invasion by Myrica faya Alters Ecosystem Development in Hawaii. Science, 238(4828), 802-804. doi:10.1126/science.238.4828.802Wittenberg, R., & Cock, M. J. W. (Eds.). (2001). Invasive alien species: a toolkit of best prevention and management practices. doi:10.1079/9780851995694.000

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities 1,2 . This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity 3�6 . Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55 of the global rise in mean BMI from 1985 to 2017�and more than 80 in some low- and middle-income regions�was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing�and in some countries reversal�of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories. © 2019, The Author(s)

    Different Lactobacillus populations dominate in "Chorizo de Leon" manufacturing performed in different production plants

    No full text
    “Chorizo de Leon” is a high-value Spanish dry fermented sausage traditionally manufactured without the use of starter cultures, owing to the activity of a house-specific autochthonous microbiota that naturally contaminates the meat from the environment, the equipment and the raw materials. Lactic acid bacteria (particularly Lactobacillus) and coagulase-negative cocci (mainly Staphylococcus) have been reported as the most important bacterial groups regarding the organoleptic and safety properties of the dry fer- mented sausages. In this study, samples from raw minced meat to final products were taken from five different producers and the microbial diversity was investigated by high-throughput sequencing of 16S rRNA gene amplicons. The diverse microbial composition observed during the first stages of “Chorizo de L eon” evolved during ripening to a microbiota mainly composed by Lactobacillus in the final product. Oligotyping performed on 16S rRNA gene sequences of Lactobacillus and Staphylococcus populations revealed sub-genus level diversity within the different manufacturers, likely responsible of the charac- teristic organoleptic properties of the products from different companies

    Erratum to: Ultra high energy photons and neutrinos with JEM-EUSO (Exp Astron, 10.1007/s10686-013-9353-2)

    Get PDF

    Search for supersymmetric partners of electrons and muons in proton–proton collisions at s=13TeV

    Get PDF
    A search for direct production of the supersymmetric (SUSY) partners of electrons or muons is presented in final states with two opposite-charge, same-flavour leptons (electrons and muons), no jets, and large missing transverse momentum. The data sample corresponds to an integrated luminosity of 35.9 fb−1 of proton–proton collisions at s=13TeV, collected with the CMS detector at the LHC in 2016. The search uses the MT2 variable, which generalises the transverse mass for systems with two invisible objects and provides a discrimination against standard model backgrounds containing W bosons. The observed yields are consistent with the expectations from the standard model. The search is interpreted in the context of simplified SUSY models and probes slepton masses up to approximately 290, 400, and 450 GeV, assuming right-handed only, left-handed only, and both right- and left-handed sleptons (mass degenerate selectrons and smuons), and a massless lightest supersymmetric particle. Limits are also set on selectrons and smuons separately. These limits show an improvement on the existing limits of approximately 150 GeV.0info:eu-repo/semantics/publishe
    corecore