249 research outputs found

    Somatic Embryogenesis and Massive Shoot Regeneration from Immature Embryo Explants of Tef

    Get PDF
    Tef (Eragrostis tef) provides a major source of human nutrition in the Horn of Africa, but biotechnology has had little impact on its improvement to date. Here, we report the elaboration of an in vitro regeneration protocol, based on the use of immature zygotic embryos as explant. Explant size was an important determinant of in vitro regeneration efficiency, as was the formulation of the culture medium. Optimal results were obtained by culturing 0.2–0.35 mm embryo explants on a medium containing KBP minerals, 9.2–13.8 ΌM 2,4-dichlorophenoxyacetic acid, 6 mM glutamine, and 0.5% Phytagel. Although this protocol was effective for both the improved cultivar “DZ-01-196” and the landrace “Fesho”, the former produced consistently more embryogenic tissue and a higher number of regenerants. An average of more than 2,800 shoots could be obtained from each “DZ-01-196” explant after 12 weeks of in vitro culture. These shoots readily formed roots, and plantlets transferred to soil were able to develop into morphologically normal, fertile plants. This regeneration and multiplication system should allow for the application of a range of biotechnological methods to tef

    Reproductive biology in the medicinal plant, Plumbago zeylanica L.

    Get PDF
    Plumbago zeylanica L. is an important medicinal plant traditionally used for the treatment of various diseases. Phenology from seed germination via vegetative growth to reproductive development wasstudied under glasshouse and nursery conditions. Seeds rapidly germinated on a mixture of nursery soil and cattle dung in a ratio of 3:1 filled in pots or on cultivated soil under nursery conditions as aprerequisite for vegetative and flowering phenological studies. Hypogeal germination characterizes the emergence of seedlings. Subsequent vegetative and flowering phenology between glass house andnursery field populations showed significant difference (

    The low molecular weight fraction of compounds released from immature wheat pistils supports barley pollen embryogenesis

    Get PDF
    Pollen embryogenesis provides a useful means of generating haploid plants for plant breeding and basic research. Although it is well established that the efficacy of the process can be enhanced by the provision of immature pistils as a nurse tissue, the origin and compound class of the signal molecule(s) involved is still elusive. Here, a micro-culture system was established to enable the culturing of populations of barley pollen at a density too low to allow unaided embryogenesis to occur, and this was then exploited to assess the effect of using various parts of the pistil as nurse tissue. A five fold increase in the number of embryogenic calli formed was obtained by simply cutting the pistils in half. The effectiveness of the pistil-conditioned medium was transitory, since it needed replacement at least every four days to measurably ensure embryogenic development. The differential effect of various size classes of compounds present in the pistil-conditioned medium showed that the relevant molecule(s) was of molecular weight below 3 kDa. This work narrows down possible feeder molecules to lower molecular weight compounds and showed that the cellular origin of the active compound(s) is not specific to any tested part of the pistil. Furthermore the increased recovery of calli during treatment with cut pistils may provide a useful tool for plant breeders and researchers using haploid technology in barley and other plant species

    Targeted genome modifications in cereal crops

    Get PDF
    The recent advent of customizable endonucleases has led to remarkable advances in genetic engineering, as these molecular scissors allow for the targeted introduction of mutations or even precisely predefined genetic modifications into virtually any genomic target site of choice. Thanks to its unprecedented precision, efficiency, and functional versatility, this technology, commonly referred to as genome editing, has become an effective force not only in basic research devoted to the elucidation of gene function, but also for knowledgebased improvement of crop traits. Among the different platforms currently available for site-directed genome modifications, RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) endonucleases have proven to be the most powerful. This review provides an application-oriented overview of the development of customizable endonucleases, current approaches to cereal crop breeding, and future opportunities in this field

    Agrobacterium-Mediated Gene Transfer to Cereal Crop Plants: Current Protocols for Barley, Wheat, Triticale, and Maize

    Get PDF
    The development of powerful “omics” technologies has enabled researchers to identify many genes of interest for which comprehensive functional analyses are highly desirable. However, the production of lines which ectopically express recombinant genes, or those in which endogenous genes are knocked down via stable transformation, remains a major bottleneck for the association between genetics and gene function in monocotyledonous crops. Methods of effective DNA transfer into regenerable cells of immature embryos from cereals by means of Agrobacterium tumefaciens have been modified in a stepwise manner. The effect of particular improvement measures has often not been significantly evident, whereas their combined implementation has resulted in meaningful advances. Here, we provide updated protocols for the Agrobacterium-mediated generation of stably transgenic barley, wheat, triticale and maize. Based upon these methods, several hundred independent transgenic lines have been delivered, with efficiencies of inoculated embryos leading to stably transgenic plants reaching 86% in barley, 10% in wheat, 4% in triticale, and 24% in maize

    Stable gene replacement in barley by targeted double-strand break induction

    Get PDF
    Gene targeting is becoming an important tool for precision genome engineering in plants. During gene replacement, a variant of gene targeting, transformed DNA integrates into the genome by homologous recombination (HR) to replace resident sequences. We have analysed gene targeting in barley (Hordeum vulgare) using a model system based on double-strand break (DSB) induction by the meganuclease I-SceI and a transgenic, artificial target locus. In the plants we obtained, the donor construct was inserted at the target locus by homology-directed DNA integration in at least two transformants obtained in a single experiment and was stably inherited as a single Mendelian trait. Both events were produced by one-sided integration. Our data suggest that gene replacement can be achieved in barley with a frequency suitable for routine application. The use of a codon-optimized nuclease and co-transfer of the nuclease gene together with the donor construct are probably the components important for efficient gene targeting. Such an approach, employing the recently developed synthetic nucleases/nickases that allow DSB induction at almost any sequence of a genome of interest, sets the stage for precision genome engineering as a routine tool even for important crops such as barley

    Analysis of T-DNA integration and generative segregation in transgenic winter triticale (x Triticosecale Wittmack)

    Get PDF
    BACKGROUND: While the genetic transformation of the major cereal crops has become relatively routine, to date only a few reports were published on transgenic triticale, and robust data on T-DNA integration and segregation have not been available in this species. RESULTS: Here, we present a comprehensive analysis of stable transgenic winter triticale cv. Bogo carrying the selectable marker gene HYGROMYCIN PHOSPHOTRANSFERASE (HPT) and a synthetic green fluorescent protein gene (gfp). Progeny of four independent transgenic plants were comprehensively investigated with regard to the number of integrated T-DNA copies, the number of plant genomic integration loci, the integrity and functionality of individual T-DNA copies, as well as the segregation of transgenes in T(1) and T(2) generations, which also enabled us to identify homozygous transgenic lines. The truncation of some integrated T-DNAs at their left end along with the occurrence of independent segregation of multiple T-DNAs unintendedly resulted in a single-copy segregant that is selectable marker-free and homozygous for the gfp gene. The heritable expression of gfp driven by the maize UBI-1 promoter was demonstrated by confocal laser scanning microscopy. CONCLUSIONS: The used transformation method is a valuable tool for the genetic engineering of triticale. Here we show that comprehensive molecular analyses are required for the correct interpretation of phenotypic data collected from the transgenic plants

    VII Jornadas de Expania

    Get PDF
    Sección: Noticias. Noticias externasLos días 27 y 28 de mayo se celebraron en Santiago de Compostela las VII Jornadas de Expania, la Asociación de Usuarios de Ex Libris en España.N
    • 

    corecore