514 research outputs found

    Cochlear injury and adaptive plasticity of the auditory cortex

    Get PDF
    Growing evidence suggests that cochlear stressors as noise exposure and aging can induce homeostatic/maladaptive changes in the central auditory system from the brainstem to the cortex. Studies centered on such changes have revealed several mechanisms that operate in the context of sensory disruption after insult (noise trauma, drug-, or age-related injury). The oxidative stress is central to current theories of induced sensory-neural hearing loss and aging, and interventions to attenuate the hearing loss are based on antioxidant agent. The present review addresses the recent literature on the alterations in hair cells and spiral ganglion neurons due to noise-induced oxidative stress in the cochlea, as well on the impact of cochlear damage on the auditory cortex neurons. The emerging image emphasizes that noise-induced deafferentation and upward spread of cochlear damage is associated with the altered dendritic architecture of auditory pyramidal neurons. The cortical modifications may be reversed by treatment with antioxidants counteracting the cochlear redox imbalance. These findings open new therapeutic approaches to treat the functional consequences of the cortical reorganization following cochlear damage

    Antioxidant treatment with coenzyme Q-ter in prevention of gentamycin ototoxicity in an animal model

    Get PDF
    Aminoglycosides, such as gentamycin, are well known ototoxic agents. Toxicity occurs via an activation process involving the formation of an iron-gentamycin complex with free radical production. Antioxidants like Q-ter (a soluble formulation of coenzyme Q10, CoQ10), can limit or prevent cellular ototoxic damage. The present study was designed to investigate the possible protective effects of Q-ter on gentamycin ototoxicity in albino guinea pigs (250-300 g). Animals were divided into five experimental groups: I, a sham control group given an intra-peritoneal (I.P.) injection of 0.5 ml saline (SHAM); II, gentamycin group (GM), treated with an injection of gentamycin (100 mg/ kg); III, gentamycin + Q-ter group (GM+Q-ter), treated with gentamycin (same dose as group II) and an I.P. injection of coenzyme Q10 terclatrate (Q-ter) at 100 mg/kg body weight; IV, injected with gentamycin (100 mg/kg) plus saline; V, treated with Q-ter alone (100 mg/ kg). All animals were treated for 14 consecutive days. Auditory function was evaluated by recording auditory brainstem responses (ABR) at 15 and 30 days from the beginning of treatment. Morphological changes were analyzed by rhodamine-phalloidine staining. Gentamycininduced progressive high-frequency hearing loss of 45-55 dB SPL. Q-ter therapy slowed and attenuated the progression of hearing loss, yielding a threshold shift of 20 dB. The significant loss of outer hair cells (OHCs) in the cochlear medio-basal turn in gentamycin-treated animals was not observed in the cochleae of animals protected with Q-ter. This study supports the hypothesis that Q-ter interferes with gentamycin-induced free radical formation, and suggests that it may be useful in protecting OHC function from aminoglycoside ototoxicity, thus reducing hearing loss

    Detection of age-related hearing losses (Arhl) via transient-evoked otoacoustic emissions

    Get PDF
    Purpose: The objective of the study was to identify subjects presenting hearing deficits, specifically age-related hearing losses (ARHL), via objective assessment methodologies. Materials and Methods: Initially, 259 subjects (165 men, 94 women) were enrolled in the study. After the application of inclusion criteria, the final number was reduced to 88 subjects (49.8 ± 19.1 ys) subdivided into 64 normal and 83 ARHL cases. The subjects were assessed with traditional audiometry tests and with transiently evoked otoacoustic emissions (TEOAEs). Since each ear has its own acoustic signature, the TEOAE analyses were conducted in terms of ears and not subjects. The TEOAE data were processed by traditional and recurrence quantification analyses, leading to the estimation of the WWR (whole waveform reproducibility) and the new RAD2D (2-dimensional radius) parameters. A plot of WWR vs RAD2D was used to optimize the classification of the cases presenting ARHL. Results: By using a WWR value of 70% as a classifier, the sensitivity of TEOAEs was estimated as 75.9% and the specificity as 89.1%. By using the RAD2D parameter (with a cutoff value of 1.78), a sensitivity value of 80.7% and a specificity value of 71.9% were obtained. When both parameters were used, a sensitivity value of 85.5% and a specificity value of 92.2% were estimated. In the latter classification paradigm, the number of false negatives decreased from 20 to 12 out of 83 ears (14%). Conclusion: In adult hearing screening assessments, the proposed method optimizes the identification of subjects with a hearing impairment correlated to the presence of age-related hearing loss

    Clinical associations of serum antiendothelial cell antibodies in patients with sudden sensorineural hearing loss

    Get PDF
    Objectives/Hypothesis: The role of antiendothelial cell antibodies in systemic vasculitis has been reported. The. aim of the study was to define the clinical associations of serum antiendothelial cell antibodies in patients with sudden sensorineural hearing loss. Study Design: A prospective study in patients with sudden sensorineural hearing loss. Methods: Serum samples were taken from 59 consecutive patients with sudden sensorineural hearing loss at time of presentation and from 28 normal control subjects. Indirect immunofluorescence assay was used to detect antiendothelial cell antibodies. Results: The prevalence of antiendothelial cell antibody detection was 54% (32 of 59 patients), with a statistically significant difference between patients and control subjects (P = .0064). Antiendothelial cell antibody positivity was significantly associated with absent recovery of hearing loss (P = .0020). Conclusions: The cytotoxicity to endothelial cells of the inner ear by antiendothelial cell antibody-positive sera might play a role in causing the stria vascularis damage in immune-mediated sudden sensorineural deafness. The appearance of antiendothelial cell antibody is related to the poor outcome of hearing loss, and its detection could be helpful in the selection of particular patients with sensorineural hearing loss for specific immunosuppressive treatments

    Mouse Panx1 Is Dispensable for Hearing Acquisition and Auditory Function

    Get PDF
    Panx1 forms plasma membrane channels in brain and several other organs, including the inner ear. Biophysical properties, activation mechanisms and modulators of Panx1 channels have been characterized in detail, however the impact of Panx1 on auditory function is unclear due to conflicts in published results. To address this issue, hearing performance and cochlear function of the Panx1−/− mouse strain, the first with a reported global ablation of Panx1, were scrutinized. Male and female homozygous (Panx1−/−), hemizygous (Panx1+/−) and their wild type (WT) siblings (Panx1+/+) were used for this study. Successful ablation of Panx1 was confirmed by RT-PCR and Western immunoblotting in the cochlea and brain of Panx1−/− mice. Furthermore, a previously validated Panx1-selective antibody revealed strong immunoreactivity in WT but not in Panx1−/− cochleae. Hearing sensitivity, outer hair cell-based “cochlear amplifier” and cochlear nerve function, analyzed by auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) recordings, were normal in Panx1+/− and Panx1−/− mice. In addition, we determined that global deletion of Panx1 impacts neither on connexin expression, nor on gap-junction coupling in the developing organ of Corti. Finally, spontaneous intercellular Ca2+ signal (ICS) activity in organotypic cochlear cultures, which is key to postnatal development of the organ of Corti and essential for hearing acquisition, was not affected by Panx1 ablation. Therefore, our results provide strong evidence that, in mice, Panx1 is dispensable for hearing acquisition and auditory function

    Pioglitazone Represents an Effective Therapeutic Target in Preventing Oxidative/Inflammatory Cochlear Damage Induced by Noise Exposure

    Get PDF
    Recent progress in hearing loss research has provided strong evidence for the imbalance of cellular redox status and inflammation as common predominant mechanisms of damage affecting the organ of Corti including noise induced hearing loss. The discovery of a protective molecule acting on both mechanisms is challenging. The thiazolidinediones, a class of antidiabetic drugs including pioglitazone and rosiglitazone, have demonstrated diverse pleiotrophic effects in many tissues where they exhibit anti-inflammatory, anti-proliferative, tissue protective effects and regulators of redox balance acting as agonist of peroxisome proliferator-activated receptors (PPARs). They are members of the family of ligand regulated nuclear hormone receptors that are also expressed in several cochlear cell types, including the outer hair cells. In this study, we investigated the protective capacity of pioglitazone in a model of noise-induced hearing loss in Wistar rats and the molecular mechanisms underlying this protective effects. Specifically, we employed a formulation of pioglitazone in a biocompatible thermogel providing rapid, uniform and sustained inner ear drug delivery via transtympanic injection. Following noise exposure (120 dB, 10 kHz, 1 h), different time schedules of treatment were employed: we explored the efficacy of pioglitazone given immediately (1 h) or at delayed time points (24 and 48 h) after noise exposure and the time course and extent of hearing recovery were assessed. We found that pioglitazone was able to protect auditory function at the mid-high frequencies and to limit cell death in the cochlear basal/middle turn, damaged by noise exposure. Immunofluorescence and western blot analysis provided evidence that pioglitazone mediates both anti-inflammatory and anti-oxidant effects by decreasing NF-κB and IL-1β expression in the cochlea and opposing the oxidative damage induced by noise insult. These results suggest that intratympanic pioglitazone can be considered a valid therapeutic strategy for attenuating noise-induced hearing loss and cochlear damage, reducing inflammatory signaling and restoring cochlear redox balance

    Anti-endothelial autoantibodies in patients with sudden hearing loss.

    Get PDF
    ObjectiveslHypothesis: Sudden hearing loss (HL) can be caused by autoimmune disorders localized to the inner ear or secondary to systemic immune dis- eases. Studies in autoimmune animal strains showing HL have reported changes in the cochlear stria vas- cularis. The authors investigated the presence of an- tiendothelial cell antibodies (AECA) to see if immune- mediated vasculitis may play a role in human sudden HL. Study Design: A prospective study in patients with sudden HL. Methods: Fifteen consecutive pa- tients (mean age, 32 y) affected by sudden HL and 14 normal subjects were included. Patients with familial deafness and metabolic diseases were excluded. Ex- tensive audiovestibular, imaging, microbiological, immunological, and routine examinations were per- formed. AECA were detected on rat kidney tissue sec- tions on the sera collected at -20°C. Results: AECA were positive in 8 of 15 patients (53%) (2 of 5 men and 6 of 10 women), thus differing significantly from the normal control population, in which only 2 of 14 tested AECA positive (P = .023). Conclusions: In pa- tients with sudden HL, immune-mediated vascular damage can have a pathogenetic role and AECA might represent a serological marker of vasculitis. Key Words: Sudden hearing loss, immune-mediated vascular damage, anti-endothelial cell antibodies

    Tinnitus and Neuropsychological Dysfunction in the Elderly: A Systematic Review on Possible Links

    Get PDF
    Introduction: Tinnitus is a common and disabling symptom often associated with hearing loss. While clinical practice frequently shows that a certain degree of psychological discomfort often characterizes tinnitus suffers, it has been recently suggested in adults as a determining factor for cognitive decline affecting attention and memory domains. The aim of our systematic review was to provide evidence for a link between tinnitus, psychological distress, and cognitive dysfunction in older patients and to focus on putative mechanisms of this relationship. Methods: We performed a systematic review, finally including 192 articles that were screened. This resulted in 12 manuscripts of which the full texts were included in a qualitative analysis. Results: The association between tinnitus and psychological distress, mainly depression, has been demonstrated in older patients, although only few studies addressed the aged population. Limited studies on cognitive dysfunction in aged patients affected by chronic tinnitus are hardly comparable, as they use different methods to validate cognitive impairment. Actual evidence does not allow us with certainty to establish if tinnitus matters as an independent risk factor for cognitive impairment or evolution to dementia. Conclusion: Tinnitus, which is usually associated with age-related hearing loss, might negatively affect emotional wellbeing and cognitive capacities in older people, but further studies are required to improve the evidence

    Decision Making on Vestibular Schwannoma: Lessons from a Multidisciplinary Board

    Get PDF
    Background: Management of vestibular schwannoma (VS) is a complex process aimed at identifying a clinical indication for fractionated stereotactic radiotherapy (sRT) or radiosurgery, microsurgical resection, or wait and scan (WS). We describe the experience of our VS multidisciplinary team (MDT) at a tertiary university referral center created for diagnosis, treatment, and follow-up of VS patients. Methods: We conducted a retrospective study on 132 consecutive patients referred to the MDT and managed by observation (WS), microsurgery, or fractionated sRT. The analysis included patient age, tumor size, hearing level, facial nerve function, tumor control, complications, and quality of life questionnaires. Results: Among the patients, 21% were subjected to microsurgery, 10% to sRT, and 69% to WS. The median follow-up time was 30 months. Outcomes based on different management modalities are described. Statistically significant differences among groups were detected in terms of quality of life (physical domain). Conclusions: MDT may provide the best individualized therapy for VS patients compared with a single gold-standard strategy
    corecore