61 research outputs found

    Activity-Directed Synthesis with Intermolecular Reactions: Development of a Fragment into a Range of Androgen Receptor Agonists

    Get PDF
    Activity-directed synthesis (ADS), a novel discovery approach in which bioactive molecules emerge in parallel with associated syntheses, was exploited to develop a weakly binding fragment into novel androgen receptor agonists. Harnessing promiscuous intermolecular reactions of carbenoid compounds enabled highly efficient exploration of chemical space. Four substrates were prepared, yet exploited in 326 reactions to explore diverse chemical space; guided by bioactivity alone, the products of just nine of the reactions were purified to reveal diverse novel agonists with up to 125-fold improved activity. Remarkably, one agonist stemmed from a novel enantioselective transformation; this is the first time that an asymmetric reaction has been discovered solely on the basis of the biological activity of the product. It was shown that ADS is a significant addition to the lead generation toolkit, enabling the efficient and rapid discovery of novel, yet synthetically accessible, bioactive chemotypes

    Dual FRET assay for detecting receptor protein interaction with DNA

    Get PDF
    We present here a new assay that is based on the idea of the molecular beacon. This assay makes it possible to investigate two proteins interacting with DNA at two binding sites that are close to each other. The effectiveness of the test depends on the exclusive binding of three DNA fragments in the presence of two proteins, and the monitoring of the process depends upon observing the quenching of two independent fluorescence donors. As a model we used the components of the heterodimeric ecdysteroid receptor proteins ultraspiracle (Usp) and ecdysone receptor (EcR) from Drosophila melanogaster and a response element from the promoter of the hsp27 gene. The response element consists of two binding sites (half-sites) for the DNA binding domains (DBDs). We have shown that protein–protein interactions mediate cooperative binding of the ecdysteroid receptor DBDs to a hsp27pal response element. The analysis of the microscopic dissociation constants obtained with the DMB led to the conclusion that there was increased affinity of UspDBD to the 5′ half-site in the presence of EcRDBD when the 3′ half-site was occupied, and increased affinity of EcRDBD to the 3′ half-site when the 5′ half-site was occupied

    Luminescent detection of DNA-binding proteins

    Get PDF
    Transcription factors play a central role in cell development, differentiation and growth in biological systems due to their ability to regulate gene expression by binding to specific DNA sequences within the nucleus. The dysregulation of transcription factor signaling has been implicated in the pathogenesis of a number of cancers, developmental disorders, inflammation and autoimmunity. There is thus a high demand for convenient high-throughput methodologies able to detect sequence-specific DNA-binding proteins and monitor their DNA-binding activities. Traditional approaches for protein detection include gel mobility shift assays, DNA footprinting and enzyme-linked immunosorbent assays (ELISAs) which tend to be tedious, time-consuming, and may necessitate the use of radiographic labeling. By contrast, luminescence technologies offer the potential for rapid, sensitive and low-cost detection that are amenable to high-throughput and real-time analysis. The discoveries of molecular beacons and aptamers have spearheaded the development of new luminescent methodologies for the detection of proteins over the last decade. We survey here recent advances in the development of luminescent detection methods for DNA-binding proteins, including those based on molecular beacons, aptamer beacons, label-free techniques and exonuclease protection

    Dissecting the Relation between a Nuclear Receptor and GATA: Binding Affinity Studies of Thyroid Hormone Receptor and GATA2 on TSHβ Promoter

    Get PDF
    Background: Much is known about how genes regulated by nuclear receptors (NRs) are switched on in the presence of a ligand. However, the molecular mechanism for gene down-regulation by liganded NRs remains a conundrum. The interaction between two zinc-finger transcription factors, Nuclear Receptor and GATA, was described almost a decade ago as a strategy adopted by the cell to up-or down-regulate gene expression. More recently, cell-based assays have shown that the Zn-finger region of GATA2 (GATA2-Zf) has an important role in down-regulation of the thyrotropin gene (TSH beta) by liganded thyroid hormone receptor (TR). Methodology/Principal Findings: In an effort to better understand the mechanism that drives TSH beta down-regulation by a liganded TR and GATA2, we have carried out equilibrium binding assays using fluorescence anisotropy to study the interaction of recombinant TR and GATA2-Zf with regulatory elements present in the TSH beta promoter. Surprisingly, we observed that ligand (T3) weakens TR binding to a negative regulatory element (NRE) present in the TSH beta promoter. We also show that TR may interact with GATA2-Zf in the absence of ligand, but T3 is crucial for increasing the affinity of this complex for different GATA response elements (GATA-REs). Importantly, these results indicate that TR complex formation enhances DNA binding of the TR-GATA2 in a ligand-dependent manner. Conclusions: Our findings extend previous results obtained in vivo, further improving our understanding of how liganded nuclear receptors down-regulate gene transcription, with the cooperative binding of transcription factors to DNA forming the core of this process.Medical Research Council (MRC), UKConselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazi

    Adaptation of High-Throughput Screening in Drug Discovery—Toxicological Screening Tests

    Get PDF
    High-throughput screening (HTS) is one of the newest techniques used in drug design and may be applied in biological and chemical sciences. This method, due to utilization of robots, detectors and software that regulate the whole process, enables a series of analyses of chemical compounds to be conducted in a short time and the affinity of biological structures which is often related to toxicity to be defined. Since 2008 we have implemented the automation of this technique and as a consequence, the possibility to examine 100,000 compounds per day. The HTS method is more frequently utilized in conjunction with analytical techniques such as NMR or coupled methods e.g., LC-MS/MS. Series of studies enable the establishment of the rate of affinity for targets or the level of toxicity. Moreover, researches are conducted concerning conjugation of nanoparticles with drugs and the determination of the toxicity of such structures. For these purposes there are frequently used cell lines. Due to the miniaturization of all systems, it is possible to examine the compound’s toxicity having only 1–3 mg of this compound. Determination of cytotoxicity in this way leads to a significant decrease in the expenditure and to a reduction in the length of the study

    Un proyecto para impulsar el hermanamiento entre centros de primaria en el marco del programa eTwinning.

    Get PDF
    Con este Trabajo de Fin de Grado se pretende realizar una aproximación conceptual a los Programas Educativos Europeos, su evolución y sus estrategias sectoriales para la Educación Primaria. A tal fin, se han analizado las guías y manuales elaborados por la Comisión Europea para los distintos programas así como diversos estudios de expertos investigadores en la materia. A partir de este análisis y utilizando una de las herramientas más versátiles que los Programas Educativos Europeos poseen para la etapa de educación obligatoria, la plataforma eTwinning, se presenta un proyecto educativo para un centro de Educación Infantil y Primaria describiendo sus objetivos, actividades y cronograma así como los instrumentos y herramientas elaboradas para formar a los docentes y para evaluar todo el proceso y a sus participantes. Este proyecto educativo pretende ser una propuesta para aumentar la motivación y, a la vez, conseguir mejorar el manejo de las TIC, una enseñanza bilingüe efectiva y la creación de un sentimiento de ciudadanía global

    Cell infection within a microfluidic device using virus gradients<br

    No full text
    Abstract A microfluidic device has been developed which allows cells to be infected at many different concentrations of virus within a microscale environment. Diffusion and laminar flow were used to create a concentration gradient of virus particles over cells attached to the bottom of a microchannel. The expression of green fluorescent protein (GFP) was monitored optically in situ over several days. In characterizing non-gradient infection at the microscale, average multiplicity of infections (MOIs) ranging from 8 to 25 were used and reduced GFP expression levels, compared to accepted macroscale values, were observed. Cells infected with virus gradients also displayed reduced expression levels but their location within the microchannel followed the same trend as the virus gradient
    corecore