3,533 research outputs found

    Consistency Condition for the Pinch Technique Self-Energies at Two Loops

    Get PDF
    A simple and testable necessary condition for the gauge independence of the Pinch Technique self-energies at two loops is discussed. It is then shown that, in the case of the ZZ and WW self-energies, the condition is indeed satisfied by the Papavassiliou-Pilaftsis formulation.Comment: 7 pages, Latex, 1 PostScript figur

    BRST-driven cancellations and gauge invariant Green's functions

    Get PDF
    We study a fundamental, all order cancellation operating between graphs of distinct kinematic nature, which allows for the construction of gauge-independent effective self-energies, vertices, and boxes at arbitrary order.Comment: 4 pages, 3 figures. Contributed to QCD 03: High-Energy Physics International Conference in Quantum Chromodynamics, Montpellier, France, 2-9 July 200

    On the definition and observability of the neutrino charge radius

    Get PDF
    We present a brief summary of recent results concerning the unambiguous definition and experimental extraction of the gauge-invariant and process-independent neutrino charge radius.Comment: 5 pages, no figures, talk presented at the XXX International Meeting on Fundamental Physics, IMFP2002, Jaca (Huesca), January 28th -- February 1st, 200

    Gluon masses without seagull divergences

    Full text link
    The study of dynamical gluon mass generation at the level of Schwinger-Dyson equation involves a delicate interplay between various field-theoretic mechanisms The underlying local gauge invariance remains intact by resorting to the well-known Schwinger mechanism, which is assumed to be realized by longitudinally coupled bound state poles, produced by the non-perturbative dynamics of the theory. These poles are subsequently included into the Schwinger-Dyson equation of the gluon propagator through the three-gluon vertex, generating a non-vanishing gluon mass, which, however, is expressed in terms of divergent seagull integrals. In this talk we explain how such divergences can be eliminated completely by virtue of a characteristic identity, valid in dimensional regularization. The ability to trigger this identity depends, in turn, on the details of the three-gluon vertex employed, and in particular, on the exact way the bound state poles are incorporated. A concrete example of a vertex that triggers the aforementioned identity is constructed, the ensuing cancellation of all seagull divergences is explicitly demonstrated, and a finite gluon mass is obtained. Due to the multitude of conditions that must be simultaneously satisfied, this construction appears to be exclusively realized within the PT-BFM framework. The resulting system of integral equations gives rise to a gluon mass that displays power-law running and an effective charge which, due to the presence of the gluon mass, freezes in the infrared at a finite (non-vanishing) value.Comment: 12 pages, 5 figures. Talk presented at the International Workshop on QCD Green's Functions, Confinement, and Phenomenology - QCD-TNT09, September 07 - 11 2009, ECT* Trento, Ital

    The Pinch Technique Approach to the Physics of Unstable Particles

    Get PDF
    The consistent description of unstable particles within the framework of perturbative gauge field theories necessitates the definition and resummation of off-shell Green's functions, which must respect several crucial physical requirements. We present the solution to this problem at one-loop, using the pinch technique.Comment: 11 pages, uses revtex, 7 Figures in separate ps file, contribution to the 1998 Corfu Summer Institute on Elementary Particle Physics (JHEP proceedings
    • …
    corecore