105 research outputs found

    Drying Kinetics of Oca (Oxalis Tuberosa)

    Get PDF
    One of the most important steps for agro-industrial industrialization is examining the kinetic behavior of products, to determine the ideal parameters to maintain their characteristics throughout the production chain. This study experimentally determined the drying kinetics of oca, an indigenous product of the Andean region, because there is no established information on the drying techniques of this tuber. The Andean region is the cradle of a large number of food crops that were domesticated and exploited by indigenous people thousands of years ago, even long before the expansion of the Inca civilization. In Ecuador, oca is perhaps the most important element of the daily diet, and an acceptable level of purity and hygiene has been reached. Oca provides fiber, essential amino acids and a low level of fat. In this study, a temperature of 60ºC was set at the beginning of each experimental run. The weight of the oca slices was measured every 10 min. The experiments were carried out in triplicate. Data were analyzed using StatGraphics software. Two drying periods were observed: the initial period of constant drying speed, where the removal of moisture corresponded to moisture not linked to the oca, while in the second stage, the internal moisture of the tuber was removed. Keywords: kinetic, drying, goose. RESUMEN Uno de los pasos más importantes para la industrialización agroindustrial es el comportamiento cinético de productos, esto en especial para conocer cuáles son los parámetros ideales para mantener las características sensoriales durante toda la cadena de producción. El presente documento determina experimentalmente la cinética de secado para un producto autóctono de la Región Andina, como lo es la oca, puesto que no existe información sobre las técnicas de secado de este tubérculo. En el Ecuador se ha alcanzado un aceptable nivel de pureza e higiene, la Oca es quizás el elemento más importante de la dieta diaria. La región andina es cuna de un gran número de cultivos alimenticios que fueron domesticados y aprovechados por pueblos autóctonos hace miles de años, inclusive mucho antes de la expansión de la civilización Inca. Aporta fibra, aminoácidos esenciales y un nivel bajo en grasa. La experimentación para conocer las curvas que modelan el comportamiento cinético del secado, se llevó a cabo por triplicado; luego de realizar la recolección de datos, estos fueron analizados utilizando el software estadístico StatGraphics. donde se obtuvo el respectivo análisis de varianza y las curvas. En el estudio se configuró una temperatura de 60ºC al inicio de cada corrida experimental, Se midió el peso de las rodajas de Oca cada 10 min, los datos fueron registrados y se procesó las tablas resultantes. En el estudio se pudo observar dos periodos de secado: Periodo inicial de velocidad de secado constante, donde la eliminación de humedad corresponde a la humedad no ligada a la oca, mientras en la segunda etapa se eliminó la humedad interna del tubérculo. Palabras claves: cinética, secado, oca

    Dissecting the expression patterns of transcription factors across conditions using an integrated network-based approach

    Get PDF
    In prokaryotes, regulation of gene expression is predominantly controlled at the level of transcription. Transcription in turn is mediated by a set of DNA-binding factors called transcription factors (TFs). In this study, we map the complete repertoire of ∼300 TFs of the bacterial model, Escherichia coli, onto gene expression data for a number of nonredundant experimental conditions and show that TFs are generally expressed at a lower level than other gene classes. We also demonstrate that different conditions harbor varying number of active TFs, with an average of about 15% of the total repertoire, with certain stress and drug-induced conditions exhibiting as high as one-third of the collection of TFs. Our results also show that activators are more frequently expressed than repressors, indicating that activation of promoters might be a more common phenomenon than repression in bacteria. Finally, to understand the association of TFs with different conditions and to elucidate their dynamic interplay with other TFs, we develop a network-based framework to identify TFs which act as markers, defined as those which are responsible for condition-specific transcriptional rewiring. This approach allowed us to pinpoint several marker TFs as being central in various specialized conditions such as drug induction or growth condition variations, which we discuss in light of previously reported experimental findings. Further analysis showed that a majority of identified markers effectively control the expression of their regulons and, in general, transcriptional programs of most conditions can be effectively rewired by a very small number of TFs. It was also found that closeness is a key centrality measure which can aid in the successful identification of marker TFs in regulatory networks. Our results suggest the utility of the network-based approaches developed in this study to be applicable for understanding other interactomic data sets

    3D-footprint: a database for the structural analysis of protein–DNA complexes

    Get PDF
    3D-footprint is a living database, updated and curated on a weekly basis, which provides estimates of binding specificity for all protein–DNA complexes available at the Protein Data Bank. The web interface allows the user to: (i) browse DNA-binding proteins by keyword; (ii) find proteins that recognize a similar DNA motif and (iii) BLAST similar DNA-binding proteins, highlighting interface residues in the resulting alignments. Each complex in the database is dissected to draw interface graphs and footprint logos, and two complementary algorithms are employed to characterize binding specificity. Moreover, oligonucleotide sequences extracted from literature abstracts are reported in order to show the range of variant sites bound by each protein and other related proteins. Benchmark experiments, including comparisons with expert-curated databases RegulonDB and TRANSFAC, support the quality of structure-based estimates of specificity. The relevant content of the database is available for download as flat files and it is also possible to use the 3D-footprint pipeline to analyze protein coordinates input by the user. 3D-footprint is available at http://floresta.eead.csic.es/3dfootprint with demo buttons and a comprehensive tutorial that illustrates the main uses of this resource

    Whole-genome phylogenies of the family Bacillaceae and expansion of the sigma factor gene family in the Bacillus cereus species-group

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Bacillus cereus </it><it>sensu lato </it>group consists of six species (<it>B. anthracis</it>, <it>B. cereus</it>, <it>B. mycoides</it>, <it>B. pseudomycoides</it>, <it>B. thuringiensis</it>, and <it>B. weihenstephanensis</it>). While classical microbial taxonomy proposed these organisms as distinct species, newer molecular phylogenies and comparative genome sequencing suggests that these organisms should be classified as a single species (thus, we will refer to these organisms collectively as the <it>Bc </it>species-group). How do we account for the underlying similarity of these phenotypically diverse microbes? It has been established for some time that the most rapidly evolving and evolutionarily flexible portions of the bacterial genome are regulatory sequences and transcriptional networks. Other studies have suggested that the sigma factor gene family of these organisms has diverged and expanded significantly relative to their ancestors; sigma factors are those portions of the bacterial transcriptional apparatus that control RNA polymerase recognition for promoter selection. Thus, examining sigma factor divergence in these organisms would concurrently examine both regulatory sequences and transcriptional networks important for divergence. We began this examination by comparison to the sigma factor gene set of <it>B. subtilis</it>.</p> <p>Results</p> <p>Phylogenetic analysis of the <it>Bc </it>species-group utilizing 157 single-copy genes of the family <it>Bacillaceae </it>suggests that several taxonomic revisions of the genus <it>Bacillus </it>should be considered. Within the <it>Bc </it>species-group there is little indication that the currently recognized species form related sub-groupings, suggesting that they are members of the same species. The sigma factor gene family encoded by the <it>Bc </it>species-group appears to be the result of a dynamic gene-duplication and gene-loss process that in previous analyses underestimated the true heterogeneity of the sigma factor content in the <it>Bc </it>species-group.</p> <p>Conclusions</p> <p>Expansion of the sigma factor gene family appears to have preferentially occurred within the extracytoplasmic function (ECF) sigma factor genes, while the primary alternative (PA) sigma factor genes are, in general, highly conserved with those found in <it>B. subtilis</it>. Divergence of the sigma-controlled transcriptional regulons among various members of the <it>Bc </it>species-group likely has a major role in explaining the diversity of phenotypic characteristics seen in members of the <it>Bc </it>species-group.</p

    The cis-regulatory map of Shewanella genomes

    Get PDF
    While hundreds of microbial genomes are sequenced, the challenge remains to define their cis-regulatory maps. Here, we present a comparative genomic analysis of the cis-regulatory map of Shewanella oneidensis, an important model organism for bioremediation because of its extraordinary abilities to use a wide variety of metals and organic molecules as electron acceptors in respiration. First, from the experimentally verified transcriptional regulatory networks of Escherichia coli, we inferred 24 DNA motifs that are conserved in S. oneidensis. We then applied a new comparative approach on five Shewanella genomes that allowed us to systematically identify 194 nonredundant palindromic DNA motifs and corresponding regulons in S. oneidensis. Sixty-four percent of the predicted motifs are conserved in at least three of the seven newly sequenced and distantly related Shewanella genomes. In total, we obtained 209 unique DNA motifs in S. oneidensis that cover 849 unique transcription units. Besides conservation in other genomes, 77 of these motifs are supported by at least one additional type of evidence, including matching to known transcription factor binding motifs and significant functional enrichment or expression coherence of the corresponding target genes. Using the same approach on a more focused gene set, 990 differentially expressed genes derived from published microarray data of S. oneidensis during exposure to metal ions, we identified 31 putative cis-regulatory motifs (16 with at least one type of additional supporting evidence) that are potentially involved in the process of metal reduction. The majority (18/31) of those motifs had been found in our whole-genome comparative approach, further demonstrating that such an approach is capable of uncovering a large fraction of the regulatory map of a genome even in the absence of experimental data. The integrated computational approach developed in this study provides a useful strategy to identify genome-wide cis-regulatory maps and a novel avenue to explore the regulatory pathways for particular biological processes in bacterial systems

    Transcriptional regulation shapes the organization of genes on bacterial chromosomes

    Get PDF
    Transcription factors (TFs) are the key elements responsible for controlling the expression of genes in bacterial genomes and when visualized on a genomic scale form a dense network of transcriptional interactions among themselves and with other protein coding genes. Although the structure of transcriptional regulatory networks (TRNs) is well understood, it is not clear what constrains govern them. Here, we explore this question using the TRNs of model prokaryotes and provide a link between the transcriptional hierarchy of regulons and their genome organization. We show that, to drive the kinetics and concentration gradients, TFs belonging to big and small regulons, depending on the number of genes they regulate, organize themselves differently on the genome with respect to their targets. We then propose a conceptual model that can explain how the hierarchical structure of TRNs might be ultimately governed by the dynamic biophysical requirements for targeting DNA-binding sites by TFs. Our results suggest that the main parameters defining the position of a TF in the network hierarchy are the number and chromosomal distances of the genes they regulate and their protein concentration gradients. These observations give insights into how the hierarchical structure of transcriptional networks can be encoded on the chromosome to drive the kinetics and concentration gradients of TFs depending on the number of genes they regulate and could be a common theme valid for other prokaryotes, proposing the role of transcriptional regulation in shaping the organization of genes on a chromosome

    Divergence Involving Global Regulatory Gene Mutations in an Escherichia coli Population Evolving under Phosphate Limitation

    Get PDF
    Many of the important changes in evolution are regulatory in nature. Sequenced bacterial genomes point to flexibility in regulatory circuits but we do not know how regulation is remodeled in evolving bacteria. Here, we study the regulatory changes that emerge in populations evolving under controlled conditions during experimental evolution of Escherichia coli in a phosphate-limited chemostat culture. Genomes were sequenced from five clones with different combinations of phenotypic properties that coexisted in a population after 37 days. Each of the distinct isolates contained a different mutation in 1 of 3 highly pleiotropic regulatory genes (hfq, spoT, or rpoS). The mutations resulted in dissimilar proteomic changes, consistent with the documented effects of hfq, spoT, and rpoS mutations. The different mutations do share a common benefit, however, in that the mutations each redirect cellular resources away from stress responses that are redundant in a constant selection environment. The hfq mutation lowers several individual stress responses as well the small RNA–dependent activation of rpoS translation and hence general stress resistance. The spoT mutation reduces ppGpp levels, decreasing the stringent response as well as rpoS expression. The mutations in and upstream of rpoS resulted in partial or complete loss of general stress resistance. Our observations suggest that the degeneracy at the core of bacterial stress regulation provides alternative solutions to a common evolutionary challenge. These results can explain phenotypic divergence in a constant environment and also how evolutionary jumps and adaptive radiations involve altered gene regulation

    Engineering transcription factors with novel DNA-binding specificity using comparative genomics

    Get PDF
    The transcriptional program for a gene consists of the promoter necessary for recruiting RNA polymerase along with neighboring operator sites that bind different activators and repressors. From a synthetic biology perspective, if the DNA-binding specificity of these proteins can be changed, then they can be used to reprogram gene expression in cells. While many experimental methods exist for generating such specificity-altering mutations, few computational approaches are available, particularly in the case of bacterial transcription factors. In a previously published computational study of nitrogen oxide metabolism in bacteria, a small number of amino-acid residues were found to determine the specificity within the CRP (cAMP receptor protein)/FNR (fumarate and nitrate reductase regulatory protein) family of transcription factors. By analyzing how these amino acids vary in different regulators, a simple relationship between the identity of these residues and their target DNA-binding sequence was constructed. In this article, we experimentally tested whether this relationship could be used to engineer novel DNA–protein interactions. Using Escherichia coli CRP as a template, we tested eight designs based on this relationship and found that four worked as predicted. Collectively, these results in this work demonstrate that comparative genomics can inform the design of bacterial transcription factors

    COMODO: an adaptive coclustering strategy to identify conserved coexpression modules between organisms

    Get PDF
    Increasingly large-scale expression compendia for different species are becoming available. By exploiting the modularity of the coexpression network, these compendia can be used to identify biological processes for which the expression behavior is conserved over different species. However, comparing module networks across species is not trivial. The definition of a biologically meaningful module is not a fixed one and changing the distance threshold that defines the degree of coexpression gives rise to different modules. As a result when comparing modules across species, many different partially overlapping conserved module pairs across species exist and deciding which pair is most relevant is hard. Therefore, we developed a method referred to as conserved modules across organisms (COMODO) that uses an objective selection criterium to identify conserved expression modules between two species. The method uses as input microarray data and a gene homology map and provides as output pairs of conserved modules and searches for the pair of modules for which the number of sharing homologs is statistically most significant relative to the size of the linked modules. To demonstrate its principle, we applied COMODO to study coexpression conservation between the two well-studied bacteria Escherichia coli and Bacillus subtilis. COMODO is available at: http://homes.esat.kuleuven.be/∼kmarchal/Supplementary_Information_Zarrineh_2010/comodo/index.html
    corecore