446 research outputs found

    04281 Abstracts Collection -- Integrative Bioinformatics - Aspects of the Virtual Cell

    Get PDF
    From 04.07.04 to 09.07.04, the Dagstuhl Seminar 04281 ``Integrative Bioinformatics - Aspects of the Virtual Cell\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    BClass: A Bayesian Approach Based on Mixture Models for Clustering and Classification of Heterogeneous Biological Data

    Get PDF
    Based on mixture models, we present a Bayesian method (called BClass) to classify biological entities (e.g. genes) when variables of quite heterogeneous nature are analyzed. Various statistical distributions are used to model the continuous/categorical data commonly produced by genetic experiments and large-scale genomic projects. We calculate the posterior probability of each entry to belong to each element (group) in the mixture. In this way, an original set of heterogeneous variables is transformed into a set of purely homogeneous characteristics represented by the probabilities of each entry to belong to the groups. The number of groups in the analysis is controlled dynamically by rendering the groups as 'alive' and 'dormant' depending upon the number of entities classified within them. Using standard Metropolis-Hastings and Gibbs sampling algorithms, we constructed a sampler to approximate posterior moments and grouping probabilities. Since this method does not require the definition of similarity measures, it is especially suitable for data mining and knowledge discovery in biological databases. We applied BClass to classify genes in RegulonDB, a database specialized in information about the transcriptional regulation of gene expression in the bacterium Escherichia coli. The classification obtained is consistent with current knowledge and allowed prediction of missing values for a number of genes. BClass is object-oriented and fully programmed in Lisp-Stat. The output grouping probabilities are analyzed and interpreted using graphical (dynamically linked plots) and query-based approaches. We discuss the advantages of using Lisp-Stat as a programming language as well as the problems we faced when the data volume increased exponentially due to the ever-growing number of genomic projects.

    Bacterial regulatory networks are extremely flexible in evolution

    Get PDF
    Over millions of years the structure and complexity of the transcriptional regulatory network (TRN) in bacteria has changed, reorganized and enabled them to adapt to almost every environmental niche on earth. In order to understand the plasticity of TRNs in bacteria, we studied the conservation of currently known TRNs of the two model organisms Escherichia coli K12 and Bacillus subtilis across complete genomes including Bacteria, Archaea and Eukarya at three different levels: individual components of the TRN, pairs of interactions and regulons. We found that transcription factors (TFs) evolve much faster than the target genes (TGs) across phyla. We show that global regulators are poorly conserved across the phylogenetic spectrum and hence TFs could be the major players responsible for the plasticity and evolvability of the TRNs. We also found that there is only a small fraction of significantly conserved transcriptional regulatory interactions among different phyla of bacteria and that there is no constraint on the elements of the interaction to co-evolve. Finally our results suggest that majority of the regulons in bacteria are rapidly lost implying a high-order flexibility in the TRNs. We hypothesize that during the divergence of bacteria certain essential cellular processes like the synthesis of arginine, biotine and ribose, transport of amino acids and iron, availability of phosphate, replication process and the SOS response are well conserved in evolution. From our comparative analysis, it is possible to infer that transcriptional regulation is more flexible than the genetic component of the organisms and its complexity and structure plays an important role in the phenotypic adaptation

    Spatio-temporal patterns and nutrient status of macroalgae in a heavily managed region of Biscayne Bay, Florida, USA

    Get PDF
    The coastal bays of South Florida are located downstream of the Florida Everglades, where a comprehensive restoration plan will strongly impact the hydrology of the region. Submerged aquatic vegetation communities are common components of benthic habitats of Biscayne Bay, and will be directly affected by changes in water quality. This study explores community structure, spatio-temporal dynamics, and tissue nutrient content of macroalgae to detect and describe relationships with water quality. The macroalgal community responded to strong variability in salinity; three distinctive macroalgal assemblages were correlated with salinity as follows: (1) low-salinity, dominated by Chara hornemannii and a mix of filamentous algae; (2) brackish, dominated by Penicillus capitatus, Batophora oerstedii, and Acetabularia schenckii; and (3) marine, dominated by Halimeda incrassata and Anadyomene stellata. Tissue-nutrient content was variable in space and time but tissues at all sites had high nitrogen and N:P values, demonstrating high nitrogen availability and phosphorus limitation in this region. This study clearly shows that distinct macroalgal assemblages are related to specific water quality conditions, and that macroalgal assemblages can be used as community-level indicators within an adaptive management framework to evaluate performance and restoration impacts in Biscayne Bay and other regions where both freshwater and nutrient inputs are modified by water management decisions

    Structural and functional map of a bacterial nucleoid

    Get PDF
    Mapping global protein binding in the E. coli genome reveals extended domains of high protein occupancy

    Effect of genomic distance on coexpression of coregulated genes in E. coli

    Get PDF
    In prokaryotes, genomic distance is a feature that in addition to coregulation affects coexpression. Several observations, such as genomic clustering of highly coexpressed small regulons, support the idea that coexpression behavior of coregulated genes is affected by the distance between the coregulated genes. However, the specific contribution of distance in addition to coregulation in determining the degree of coexpression has not yet been studied systematically. In this work, we exploit the rich information in RegulonDB to study how the genomic distance between coregulated genes affects their degree of coexpression, measured by pairwise similarity of expression profiles obtained under a large number of conditions. We observed that, in general, coregulated genes display higher degrees of coexpression as they are more closely located on the genome. This contribution of genomic distance in determining the degree of coexpression was relatively small compared to the degree of coexpression that was determined by the tightness of the coregulation (degree of overlap of regulatory programs) but was shown to be evolutionary constrained. In addition, the distance effect was sufficient to guarantee coexpression of coregulated genes that are located at very short distances, irrespective of their tightness of coregulation. This is partly but definitely not always because the close distance is also the cause of the coregulation. In cases where it is not, we hypothesize that the effect of the distance on coexpression could be caused by the fact that coregulated genes closely located to each other are also relatively more equidistantly located from their common TF and therefore subject to more similar levels of TF molecules. The absolute genomic distance of the coregulated genes to their common TF-coding gene tends to be less important in determining the degree of coexpression. Our results pinpoint the importance of taking into account the combined effect of distance and coregulation when studying prokaryotic coexpression and transcriptional regulation

    Nebulon: a system for the inference of functional relationships of gene products from the rearrangement of predicted operons

    Get PDF
    Since operons are unstable across Prokaryotes, it has been suggested that perhaps they re-combine in a conservative manner. Thus, genes belonging to a given operon in one genome might re-associate in other genomes revealing functional relationships among gene products. We developed a system to build networks of functional relationships of gene products based on their organization into operons in any available genome. The operon predictions are based on inter-genic distances. Our system can use different kinds of thresholds to accept a functional relationship, either related to the prediction of operons, or to the number of non-redundant genomes that support the associations. We also work by shells, meaning that we decide on the number of linking iterations to allow for the complementation of related gene sets. The method shows high reliability benchmarked against knowledge-bases of functional interactions. We also illustrate the use of Nebulon in finding new members of regulons, and of other functional groups of genes. Operon rearrangements produce thousands of high-quality new interactions per prokaryotic genome, and thousands of confirmations per genome to other predictions, making it another important tool for the inference of functional interactions from genomic context

    The evolution of the Caribbean Marine Protected Area Management Network and Forum (CaMPAM): 20 years of the Regional Multidimensional Program for Strengthening MPA Practitioners

    Get PDF
    In 1997, the United Nations Environment’s Caribbean Environment Program (UNEP-CEP) convened a meeting of 50 MPA managers from which CaMPAM was born. Since then, CaMPAM has adaptively evolved into a comprehensive regional program that aims at strengthening Caribbean marine protected areas at the site and national level through a variety of mechanisms. CaMPAM’s original focus was to provide training, information sharing, and communications. Shortly after, grants awarding for learning exchanges and for implementing small projects started. Partnerships were established with interested organizations. Some collaborators became mentors and served as instructors and activities\u27 coordinators.These tools allowed the capacity building program to address the MPA changing needs. These needs have been captured through site visits, consultations with scientists and managers, surveys, evaluations of courses and the entre program, CaMPAM project reports, specific requests of donors, the intergovernmental meetings of UNEP-CEP’s Cartagena Convention’s Specially Protected Areas and Wildlife (SPAW) Protocol, etc. and have shaped the program. In the spirit of having a balance between the region’s needs and the role of CaMPAM as the SPAW MPA capacity building tool, in 2016 the UNEP-CEP commissioned the review of CaMPAM program in order to make it more relevant and useful. This paper co-autored by the CaMPAM founder, its coordinator, the main collaborator, and the expert commissioned to assess CaMPAM performance describes the activities implemented in 1997-2017 and the latest assessment of the program

    Interactive effects of herbivory and substrate orientation on algal community dynamics on a coral reef

    Get PDF
    Herbivory is a significant driver of algal community dynamics on coral reefs. However, abiotic factors such as the complexity and orientation of the benthos often mediate the impact of herbivores on benthic communities. We experimentally evaluated the independent and interactive effects of substrate orientation and herbivorous fishes on algal community dynamics on a coral reef in the Florida Keys, USA. We created horizontal and vertical substrates, mimicking the trend in the reduction of vertical surfaces of coral reefs, to assess how algal communities developed either with herbivory (open areas) or without herbivory (herbivore exclosures). We found that substrate orientation was the dominant influence on macroalgal community composition. Herbivores had little impact on community development of vertical substrates as crustose algae dominated these substrates regardless of being in exclosures or open areas. In contrast, herbivores strongly impacted communities on horizontal substrates, with upright macroalgae (e.g., Dictyota spp., articulated coralline algae) dominating herbivore exclosures, while filamentous turf algae and sediment dominated open areas. Outside of exclosures, differences between vertical and horizontal substrates exposed to herbivores persisted despite similar intensity of herbivory. Our results suggest that the orientation of the reef benthos has an important impact on benthic communities. On vertical surfaces, abiotic factors may be more important for structuring algal communities while herbivory may be more important for controlling algal dynamics in flatter areas. Thus, the decline in structural complexity of Caribbean coral reefs and the flattening of reef substrates may fundamentally alter the impact that herbivores have on benthic community dynamics
    corecore