311 research outputs found

    A Review on Extraction and Recommendation of Educational Resources from WWW

    Get PDF
    Keyphrases give a basic method for portraying a report, giving the peruser a few pieces of information about its substance. Wrapper adjustment goes for consequently adjusting a formerly took in wrapper from the source Web webpage to another concealed website for data extraction. It depends on a generative model for the age of content parts identified with characteristic things and designing information in a Web page. To take care of the wrapper adjustment issue, we consider two sorts of data from the source Web webpage. The principal sort of data is the extraction information contained in the already took in wrapper from the source Web webpage. The second sort of data is the beforehand separated or gathered things. Utilize a Bayesian learning way to deal with naturally select an arrangement of preparing cases for adjusting a wrapper for the new concealed site. To take care of the new property revelation issue, we build up a model which breaks down the encompassing content sections of the qualities in the new inconspicuous site. A Bayesian learning strategy is produced to find the new qualities and their headers. The direct broad investigations from various genuine Web locales to show the viability of our structure. Keyphrases can be helpful in a different applications, for example, recovery motors, perusing interfaces, thesaurus development, content mining and so on. There are likewise different errands for which keyphrases are helpful

    Coating mechanisms of single-walled carbon nanotube by linear polyether surfactants: insights from computer simulations

    Get PDF
    The noncovalent coating of carbon-based nanomaterials, such as carbon nanotubes, has important applications in nanotechnology and nanomedicine. The molecular modeling of this process can clarify its mechanism and provide a tool for the design of novel materials. In this paper, the coating mechanism of single-walled carbon nanotubes (SWCNT) in aqueous solutions by 1,2-dimethoxyethane oxide (DME), 1,2-dimethoxypropane oxide (DMP), poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO) pentamers, and L64 triblock copolymer chains have been studied using molecular dynamics (MD) simulations. The results suggest a preferential binding to the SWCNT surface of the DMP molecules with respect to DME mainly driven by their difference in hydrophobicity. For the longer pentamers, it depends by the chain conformation. PPO isomers with radius of gyration larger than PEO pentamers bind more tightly than those with more compact conformation. In the case of the L64 triblock copolymer, the coating of the SWCNT surface produces a shell of PPO blocks with the PEO chains protruding into bulk water as expected from the so-called nonwrapping binding mechanism of SWCNT. In addition, the polymer coating, in qualitative agreement with experimental evidence on the poor capability of the L64 to disperse SWCNT, do not prevent the formation of CNT aggregates

    Biosafety of Non-Surface Modified Carbon Nanocapsules as a Potential Alternative to Carbon Nanotubes for Drug Delivery Purposes

    Get PDF
    BACKGROUND: Carbon nanotubes (CNTs) have found wide success in circuitry, photovoltaics, and other applications. In contrast, several hurdles exist in using CNTs towards applications in drug delivery. Raw, non-modified CNTs are widely known for their toxicity. As such, many have attempted to reduce CNT toxicity for intravenous drug delivery purposes by post-process surface modification. Alternatively, a novel sphere-like carbon nanocapsule (CNC) developed by the arc-discharge method holds similar electric and thermal conductivities, as well as high strength. This study investigated the systemic toxicity and biocompatibility of different non-surface modified carbon nanomaterials in mice, including multi-walled carbon nanotubes (MWCNTs), single-walled carbon nanotubes (SWCNTs), carbon nanocapsules (CNCs), and C ₆₀ fullerene (C ₆₀). The retention of the nanomaterials and systemic effects after intravenous injections were studied. METHODOLOGY AND PRINCIPAL FINDINGS: MWCNTs, SWCNTs, CNCs, and C ₆₀ were injected intravenously into FVB mice and then sacrificed for tissue section examination. Inflammatory cytokine levels were evaluated with ELISA. Mice receiving injection of MWCNTs or SWCNTs at 50 µg/g b.w. died while C ₆₀ injected group survived at a 50% rate. Surprisingly, mortality rate of mice injected with CNCs was only at 10%. Tissue sections revealed that most carbon nanomaterials retained in the lung. Furthermore, serum and lung-tissue cytokine levels did not reveal any inflammatory response compared to those in mice receiving normal saline injection. CONCLUSION: Carbon nanocapsules are more biocompatible than other carbon nanomaterials and are more suitable for intravenous drug delivery. These results indicate potential biomedical use of non-surface modified carbon allotrope. Additionally, functionalization of the carbon nanocapsules could further enhance dispersion and biocompatibility for intravenous injection

    Polymeric Nanohybrids as a New Class of Therapeutic Biotransporters

    Get PDF
    This is the peer reviewed version of the following article: Macromol Chem Phys. 2016 Jun; 217(11): 1245–1259., which has been published in final form at http://doi.org/10.1002/macp.201500464. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.A possible solution to enhance existing drug and gene therapies is to develop hybrid nanocarriers capable of delivering therapeutic agents in a controlled and targeted manner. This goal can be achieved by designing nanohybrid systems, which combine organic or inorganic nanomaterials with biomacromolecules into a single composite. The unique combination of properties along with their facile fabrication enables the design of smart carriers for both drug and gene delivery. These hybrids can be further modified with cell targeting motifs to enhance their biological interactivity. In this Talents and Trends article, an overview of emerging nanohybrid-based technologies will be provided to highlight their potential use as innovative platforms for improved cancer therapies and new strategies in regenerative medicine. The clinical relevance of these systems will be reviewed to define the current challenges which still need to be addressed to allow these therapies to move from bench to bedside

    An interlaboratory comparison on the characterization of a sub-micrometer polydisperse particle dispersion

    Get PDF
    The measurement of polydisperse protein aggregates and particles in biotherapeutics remains a challenge, especially for particles with diameters of ≈ 1 µm and below (sub-micrometer). This paper describes an interlaboratory comparison with the goal of assessing the measurement variability for the characterization of a sub-micrometer polydisperse particle dispersion composed of five sub-populations of poly(methyl methacrylate) (PMMA) and silica beads. The study included 20 participating laboratories from industry, academia, and government, and a variety of state-of-the-art particle-counting instruments. The received datasets were organized by instrument class to enable comparison of intralaboratory and interlaboratory performance. The main findings included high variability between datasets from different laboratories, with coefficients of variation from 13 % to 189 %. Intralaboratory variability was, on average, 37 % of the interlaboratory variability for an instrument class and particle sub-population. Drop-offs at either end of the size range and poor agreement on maximum counts of particle sub-populations were noted. The mean distributions from an instrument class, however, showed the size-coverage range for that class. The study shows that a poly-disperse sample can be used to assess performance capabilities of an instrument set-up (including hardware, software, and user settings) and provides guidance for the development of polydisperse reference materials.Drug Delivery Technolog

    Reductively PEGylated carbon nanomaterials and their use to nucleate 3D protein crystals: a comparison of dimensionality

    Get PDF
    A range of carbon nanomaterials, with varying dimensionality, were dispersed by a non-damaging and versatile chemical reduction route, and subsequently grafted by reaction with methoxy polyethylene glycol (mPEG) monobromides. The use of carbon nanomaterials with different geometries provides both a systematic comparison of surface modification chemistry and the opportunity to study factors affecting specific applications. Multi-walled carbon nanotubes, single-walled carbon nanotubes, graphite nanoplatelets, exfoliated few layer graphite and carbon black were functionalized with mPEG-Br, yielding grafting ratios relative to the nanocarbon framework between ca. 7 and 135 wt%; the products were characterised by Raman spectroscopy, TGA-MS, and electron microscopy. The functionalized materials were tested as nucleants by subjecting them to rigorous protein crystallization studies. Sparsely functionalized flat sheet geometries proved exceptionally effective at inducing crystallization of six proteins. This new class of nucleant, based on PEG grafted graphene-related materials, can be widely applied to promote the growth of 3D crystals suitable for X-ray crystallography. The association of the protein ferritin with functionalized exfoliated few layer graphite was directly visualized by transmission electron microscopy, illustrating the formation of ordered clusters of protein molecules critical to successful nucleation

    Preparation of Magnetic Carbon Nanotubes (Mag-CNTs) for Biomedical and Biotechnological Applications

    Get PDF
    Carbon nanotubes (CNTs) have been widely studied for their potential applications in many fields from nanotechnology to biomedicine. The preparation of magnetic CNTs (Mag-CNTs) opens new avenues in nanobiotechnology and biomedical applications as a consequence of their multiple properties embedded within the same moiety. Several preparation techniques have been developed during the last few years to obtain magnetic CNTs: grafting or filling nanotubes with magnetic ferrofluids or attachment of magnetic nanoparticles to CNTs or their polymeric coating. These strategies allow the generation of novel versatile systems that can be employed in many biotechnological or biomedical fields. Here, we review and discuss the most recent papers dealing with the preparation of magnetic CNTs and their application in biomedical and biotechnological fields
    corecore