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ABSTRACT 

A conjugate between single-walled carbon nanotubes, chitosan and folic acid has been 

prepared. It was characterized by diffusion ordered two-dimensional hydrogen-1 nuclear 

magnetic resonance and hydrogen-1 nuclear magnetic resonance spectroscopy which 

revealed the presence of a conjugate that was generated by the linkage between the 

carboxyl moiety of the folic acid and the amino group of the chitosan, which in turn was 

non-covalently bound to the single-walled carbon nanotubes. The obtained diffusion 

coefficient values demonstrated that free folic acid diffused more rapidly than the folic 

acid conjugated to single-walled carbon nanotubes-chitosan. The values of the proton 

http://ees.elsevier.com/carbon/viewRCResults.aspx?pdf=1&docID=20215&rev=2&fileID=486162&msid={A66F404F-733F-4641-BFFB-7EDDB0BA22B7}


  

signal of hydrogen-1 nuclear magnetic resonance spectroscopy and two-dimensional 

hydrogen-1 nuclear magnetic resonance spectroscopy further confirmed that the folic 

acid was conjugated to the chitosan, wrapping the single-walled carbon nanotubes. 
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1. Introduction 

Over the past decade, the interest for using carbon nanotubes (CNTs) functionalized 

with different types of biomolecules has increased [1-3]. The nanometer size and unique 

physical properties of CNTs make them attractive for anticancer drug delivery [4-8], 

molecular transport [9-11], and new therapeutic mechanisms [12, 13]. CNTs have been 

activated to target various cancer cells using folic acid (FA). FA is an attractive ligand 

that is useful for targeting cell membranes and enhancing CNTs endocytosis by the 

folate receptor [14, 15]. FA receptors can be direct targets for drug delivery [16], which 

explains the diversity of strategies used for folate conjugation.  

Conventionally, CNTs-FA has been characterized by UV-Vis (ultraviolet-visible 

spectroscopy), NIR spectroscopy (near-infrared) [17], AFM (atomic force microscopy)  

and TEM (transmission electronic microscopy) [9]
 
but not with 2D NMR (two-

dimensional nuclear magnetic resonance) experiments. The 2D NMR techniques have 

become popular since they efficiently map out 3D interactions within, or sometimes 

between, molecules [18]. The diffusion ordered spectroscopy (DOSY) technique is a 

non-invasive powerful technology that has been used for the analysis of a large variety 

of mixtures [19], as well as for the characterization of aggregates of varying sizes and 

hence different diffusion coefficients (DC) [20].  

The DOSY technique has been referred to as “NMR chromatography” for its ability 

to “separate” the components of a complex mixture. In a recent application, Marega et 

al [21] used 
1
H-2D DOSY spectroscopy to monitor the functionalization and 

purification of a carbon nanotube-polyethylene glycol (CNT-PEG) conjugate. There 

have been numerous publications on the characterization of various bioconjugates using 



  

2D NMR techniques [22, 23]. However, studies related to the characterization of CNT-

FA conjugates using 2D NMR spectroscopy have yet to be published.  

The aim of this study was to characterize a conjugate formed by single-walled carbon 

nanotubes (SWCNTs), chitosan and FA by means of the DOSY 2D-NMR technique 
1
H 

NMR spectroscopy. The values obtained for the diffusion coefficient confirmed the 

conjugation of FA to SWCNTs wrapped by the chitosan. The synthesis and utilization 

of these conjugate systems opens new possibilities for the treatment of infectious   

diseases and cancer cells [24]. 

 

2. Experimental 

2.1. Materials 

SWCNTs with diameters ranging from 2 to 5 nm and lengths between 500 and 2000 

nm were purchased from Unydim, California. Chitosan with a molecular weight of 5000 

Da, folic acid (FA) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride 

(EDC) were obtained from Sigma-Aldrich Corp. These and all other chemicals used in 

this work were of analytical grade. 

2.2. Synthesis 

2.2.1. Solubilization of single-walled carbon nanotubes 

5 mg of SWCNTs were sonicated for 1 h in 5 mL of a 30% aqueous solution of 

chitosan. The solution was centrifuged at 2800 rpm for 20 min; the supernatant was 

collected and carefully separated from the solid. After aggregation, a large bundle of 

nanotubes was found to be present. The supernatant was washed with water several 

times to remove excess chitosan. Finally, the SWCNT solution was stored at 4°C. The 



  

figure 1 shows the SWCNT-chitosan solution before and after the sonication and 

centrifugation. AFM images indicated that the majority of SWCNTs are present as 

separated single tubes coated with chitosan (see Supporting Information figure S1). 

 

 

 

Figure 1. Single-walled carbon nanotubes-chitosan (SWCNTs) conjugates before (a) 

and after (b) sonication 

 

2.2.2. Synthesis of the single-walled carbon nanotube-chitosan-folic acid conjugate  

The conjugation of FA on SWCNT-chitosan was achieved using a similar 

methodology to that of Kang [17]. First, FA (2.5 mM) was added to a solution of 

SWCNT-chitosan (5 mL), to which EDC (3.5 mM) was subsequently charged. The 

mixture was protected from light and magnetically stirred overnight at room 

temperature. The solution was then dialyzed three times with PBS buffer of pH 7.0 

(MCWO 10000) to ensure the complete removal of excess unconjugated chitosan, FA 

and EDC. In order to have an estimation of the amount of FA conjugated we made a 

calibration curve using UV-Vis with different solutions of FA at a wavelength of 364 

nm. The absorbance value of the conjugated was used to calculate the concentration of 

FA (mM). The stability of the conjugated was evaluated using Zeta Potential 

measurements (DLS, Malvern Systems). The solution was refrigerated at 4°C awaiting 

NMR experiments. 

a b 



  

2.3.  Nuclear Magnetic Resonance characterization 

2.3.1.   
Hydrogen-1 nuclear magnetic resonance spectroscopy of the single-walled 

carbon nanotube-chitosan-folic acid conjugate 

NMR samples were prepared by dissolving 100 µL of the conjugate in 400 µL of 

D2O (Merck, 99.8%). All the NMR analyses were performed on a Bruker Avance III, 

400 MHz spectrometer. 

2.3.2. DOSY 2D-NMR experiments of free folic acid single-walled carbon 

nanotube-chitosan-folic acid conjugate 

2D-DOSY experiments are usually carried out by pulse field gradient spin-echo 

(PFGSE) decay in NMR-PFGSE-NMR- (pulse sequence ledbpgp2s, Bruker). The 

ledbpgp2s sequence was used for the measurements of diffusion coefficients, recording 

32 scans for each gradient step, a linear gradient of 32 steps between 2% and 95%, a 

diffusion time (big delta) of 0.05 s, and the length of the square diffusion encoding 

gradient pulses (little delta) of 2.7 ms, unless otherwise stated. A total acquisition time 

of ca. 1 h 45 min was thus employed.  

1
H NMR spectra (1D-DOSY) were acquired with the use of PFGSE; 4 scans, 95% 

gradient strength, big delta 0.05 s, and little delta 2.7 ms. All experiments were 

performed at 298 K. 

For all spectra, the Bruker Presat program (ZGPR pulse sequence at water 

frequency, 4 scans and spectral widths of 10 ppm) was used for the suppression of water 

peaks. 

The Topspin 2.1 software was used for processing all spectra. 

 



  

3. Results and Discussion 

The conjugate was prepared by a reaction of FA with SWCNT-chitosan in the 

presence of EDC (Figure 3). The EDC is the most popular carbodiimide for conjugating 

biological substances containing carboxylates and amines [23] and it was used as a 

crosslinking agent to mediate the formation of an amide between the carboxyl group of 

the folic acid and the amine group of the chitosan. Hydrolysis by water of the 

intermediate (EDC-FA) is the major competing reaction cleaving off the activated ester 

intermediate [26]. However we obtained the conjugate and not hydrolysis was observed 

(SI Figure S2 and S3). Similar results were obtained in other works [27-29]. The 

addition of N-hydroxysuccinimide (NHS) to EDC reaction is recommended to increase 

the stability of the intermediate and the yield of reaction [23]. The formation of a 

reactive intermediate, denoted O-acylisourea, allowed the reaction with a nucleophile 

such as a chitosan (primary amine), giving rise to an amide bond. 

The absorbance values of free and conjugated FA (364 nm) were used to calculate 

the FA conjugated to SWCNT-chitosan (figure 2). The concentration of FA in the 

conjugate after dialysis was of 0.7 mM. This data indicates that approximately a 20% of 

FA was conjugated to SWCNT-chitosan. 

 

 

 

 

 



  

 

 

 

 

 

 

 

Figure 2. UV-Vis spectra of conjugated folic acid (FA), (inset) calibration curve of 

free FA 

Zeta potential is a physical property that can be related to the stability of colloidal 

dispersions and indicate the degree of repulsion between adjacent, similarly charged 

particles in the dispersion [30]. Particles with values of zeta potential between +30 and -

30 mV are considerable unstable and probably will precipitate, on the other hand 

particles with values more positive than +30mV and more negative than -30mV are 

normally considered stable. At pH value of 7.0 we obtained a zeta potential of -32.1 

mW, this could be an indication that SWCNTs-chitosan-FA can form stable dispersion 

at physiological pH.  

The 
1
H NMR spectra of the EDC, free FA, chitosan, and conjugated FA are 

shown in the figures 4a-4d. 
1
H NMR analysis confirmed the presence of the SWCNT-

chitosan-FA conjugate (Figure 4d). It is apparent that the spectrum of the conjugate 

contains signals originating from chitosan and FA. The signals at 1.68, 2.64 and 2.95-

3.6 ppm seen in the figure 4d were assigned to the resonance of the monosaccharide 



  

protons; -COCH3, -CH-NH-, and -CH2-O-, respectively. These results are in 

concordance with previous investigations [27-29].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Conjugation of SWCNT-chitosan with FA. 

 

The strong intensity of the signal at 1.90 ppm in the spectrum of Figure 4d was 

attributed to the protons of the methyl groups present in the isourea, which constitutes a 

secondary product of the reaction between chitosan and FA (Figure 3). The proton 



  

signals appearing at 6.37 (d, J 8.7 Hz, 2H), 7.21 (d, J 1.7 Hz, 2H) correspond to the 

protons of para-aminobenzoic acid (PABA) from the folate and the signal at 8.16 (s, 1 

H) corresponds to the pteridine moiety proton from the folate (Fig. 4d). 

 Figure 4d also shows a shift to high fields of the aromatic protons compared with 

the signals of free folic acid which were located at 6.12 (d, J 8.3 Hz, 2 H), 7.06 (d, J 8.3 

Hz, 2 H), 7.93 (s, 1 H) (Fig. 4b). The shift could be due to the protective effect of the  

electrons from SWCNT which produced an induced current and a magnetic field in the 

opposite direction to the applied field, thus generating a protection and moving the 

signals of FA to high fields. In addition, we observed a decrease in the signal intensity 

of aromatic protons of conjugate FA compared with the intensity of the free FA after the 

dialysis process thus confirming the removal of free FA. This proved that the couple of 

the folate residue to the SWCNT-chitosan could be achieved using the EDC-mediated 

reaction [27,28]. 

The resolution of the NMR signals was enhanced in all spectra using a ZGPR 

sequence pulse. This sequence was used in order to suppress water peaks. 

The Stejskal-Tanner equation (1) shows the dependence between DC and the decay 

of the signal amplitude [31],  

2 2 2

0

D gS S e     (1) 

Where S is the signal amplitude, So is the signal amplitude had there been not 

diffusion, D is the diffusion coefficient,  is the gyromagnetic radio,  is the duration of 

gradient pulse, g is the strength of the gradient, and  is the diffusion time corrected for 

the effects of finite gradient pulse width. The increasing gradient produced a 

progressive attenuation of each signal; the attenuation of the signal depends of the DC 



  

as in shown in the equation 1. By least-squares fitting and equation (1), it was possible 

to calculate the DC of each proton signal belonging to free and conjugated FA (figure 

5). 

The DOSY experiment yields a pseudo 2D spectrum with NMR chemical shifts in 

one dimension (horizontal axis) and self-diffusion coefficients in the other (vertical 

axis). The data from DOSY experiments were presented in a 2D contour-mode plot 

where cross-peaks between the DC values and the chemical shifts were given for each 

proton signal of the conjugate.  

The attenuation of the signals of the chemical shifts from free FA and that 

conjugated to SWCNT-chitosan was used to generate diffusion coefficients.  

With the experimental parameters optimized, full signal attenuation was achieved 

after 32 steps of linearly increasing the gradient strength from 2% to 95%.  

Figure 5a shows the bidimensional map of the DC of free FA in where all proton 

signals are characterized by the same DC, which means that they all are due to the free 

FA. All the proton signals of FA were around a DC value of 5.0 x 10
-10

 m
2
/s. The DC 

value of approx. 3.5 x 10
-10

 m
2
/s corresponds to the FA conjugated to SWCNT-chitosan 

(Fig. 5b). In this region, proton signals belonging to the chitosan and FA are included.  

The values of DC presented above reveal that the free FA diffused more rapidly than 

the FA conjugated to SWCNT-chitosan, thus confirming the rapid diffusion of free FA 

compared with its conjugated counterpart. This in turn proved the formation of a 

conjugate between FA and chitosan wrapping SWCNTs. 

 

 



  

 

Figure 4. 
1
H NMR spectra of: (a) EDC; (b) FA; (c) chitosan; (d) SWCNT-chitosan-FA 

conjugate 
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Figure 5. 
1
H DOSY spectrum of (a) non-conjugated folic acid and (b) folic acid 

conjugated to SWCNT-chitosan 

a 

b 



  

The presence of the isourea as a secondary product of the reaction was confirmed by 

the DC with a value of 5.9 x 10
-10

 m
2
/s (Figure 5b) and the faster diffusion as opposed 

to free and conjugated folic acid. Table 1 shows a comparison of DC values of all the 

compounds.  

Control DOSY experiments of EDC and the intermediate EDC-FA showed values 

of 7.08 x 10
-10

 m
2
/s and 4.2 x 10

-10
 m

2
/s respectively (see SI figure S4) thus showing the 

rapid diffusion of free EDC compared with FA conjugated to EDC. 

Table 1 Diffusion coefficients determined by 2D DOSY 

Compound Log D
 a

Diffusion coefficient (10
-10

 m
2
/s) 

Isourea -9.23 5.9 

Free folic acid -9.30 5.0 

Conjugated SWCNT-chitosan-FA -9.45 3.5 

a
Diffusion coefficients obtained by means of antilog D 

 

Following the NMR and DOSY experiments black rings around the walls of NMR 

tube were observed. We believe that this sedimentation could be due to the catalyst iron 

particles which remain after the synthesis of SWCNTs, the iron particles provide 

magnetic properties to the bioconjugate SWCNT-chitosan-FA [32]. The magnetic field 

from NMR spectrometer could align the SWCNTs depositing thus on the walls of NMR 

tube. This phenomenon has been studied and used to induce the alignment of SWCNTs 

aqueous solution under the influence of magnetic field [32].  After sedimentation is 

possible to re-dissolve the bioconjugate from NMR tube by mean of sonication and thus 

obtain and useful NMR spectra, however to have a full explanation further experiments 

are necessary to clarify this situation. 

 



  

4. Conclusions 

According to the present study, a two-dimensional diffusion-ordered NMR 

spectroscopy with presaturation of the solvent (ZGPR) could be successfully employed 

to monitor the conjugation of folic acid to SWCNTs-chitosan. The obtained diffusion 

coefficient values revealed that free folic acid diffused more rapidly than its counterpart 

conjugated to SWCNT, thus proving the efficiency of the synthesis method when it 

comes to attaching the folic acid molecules around the SWCNT. This is an important 

requirement when developing conjugates aimed for drug-delivery systems or alternative 

treatments in nanomedicine. 

2D-DOSY analysis is thus as a new tool for monitoring and characterizing the 

functionalization of different types of nanomaterials with biomolecules. 
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Table captions 

 

Table 1 Diffusion coefficients determined by 2D DOSY 

 

Figure captions 

 

Figure 1. Single walled carbon nanotubes-chitosan (SWCNT) conjugate before (a) and 

after (b) sonication 

Figure 2. UV-Vis spectra of conjugated folic acid (FA), (inset) calibration curve of free 

FA 

Figure 3. Conjugation of SWCNT-chitosan with FA. 

Figure 4.
 1

H NMR spectra of: (a) EDC; (b) FA; (c) chitosan; (d)  SWCNT-chitosan-FA 

conjugate 

Figure 5. 
1
H DOSY spectrum of (a) non-conjugated folic acid and (b) folic acid 

conjugated to SWCNTs-chitosan 

 

 

 

 


