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Abstract

A possible solution to enhance existing drug and gene therapies is to develop hybrid nanocarriers 

capable of delivering therapeutic agents in a controlled and targeted manner. This goal can be 

achieved by designing nanohybrid systems, which combine organic or inorganic nanomaterials 

with biomacromolecules into a single composite. The unique combination of properties along with 

their facile fabrication enables the design of smart carriers for both drug and gene delivery. These 

hybrids can be further modified with cell targeting motifs to enhance their biological interactivity. 

In this Talents and Trends article, an overview of emerging nanohybrid-based technologies will be 

provided to highlight their potential use as innovative platforms for improved cancer therapies and 

new strategies in regenerative medicine. The clinical relevance of these systems will be reviewed 

to define the current challenges which still need to be addressed to allow these therapies to move 

from bench to bedside.
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1. Introduction

The therapeutic effects of a drug or gene are dependent upon its rate of administration as 

well as its ability to target a specific tissue or organ. This concept particularly holds true for 

the eradication of tumors, since targeted delivery of chemotherapy drugs can localize the 

drug’s toxicity to the hypoxic tumor tissue rather than surrounding tissues.[1] Moreover, the 

pharmacological activity that defines the overall success of a therapy is directly influenced 

not only by control over the release rate, but also by the dose or quantity of cargo delivered 

to specific tissues. Nanocarriers can be designed to both increase the bioavailability of drugs 

that are poorly water-soluble and to promote stability of their cargo as in the case of genetic 

materials that are generally susceptible to biodegradation.[2] In recent decades, these exciting 

properties have spurred a rapidly growing field of research focused on engineering smart 

nanomaterials that improve upon the delivery and targeting mechanisms of existing drug and 

gene therapies.[3–5]

To design this type of carrier, the selection of the appropriate combination of nanomaterials 

is fundamental in introducing unique and favorable properties that are not typically found in 

single components. For this reason, nanohybrids, a combination of different classes of 

biomaterials at the nanoscale level, are presented as a possible solution to address multiple 

bottlenecks for successful therapies, such as controlling the rate of cargo diffusion, 

increasing drug stability, and selectively targeted delivery.[6] This emerging class of 

nanocomposite materials combines synthetic or natural polymers including polysaccharides, 

proteins and nucleic acids together with inorganic or organic compounds in a 3D 

architecture.[7] This new type of carrier offers a versatile platform that can be easily tuned 

and modified by changing the type of nanomaterial or polymer. Among the wide variety of 

nanoscale compounds available to construct nanohybrids, both inorganic materials such as 

clay minerals and organic materials including carbon nanotubes (CNTs), graphene oxide 

(GO), and nanodiamonds (NDs) offer a valid alternative. In fact, each one of them has 

unique nanoscale properties that are favorable for the design of new and improved 

therapeutic carrier systems.[9–12] Nanohybrids composed of these materials have been 

applied over the past decades as smart carriers for the delivery of drugs and genes, especially 

for targeted cancer treatment. A successful design of this type of bionanohybrid material 

requires an understanding of the superficial properties of the nanoscale component, such as 

surface area, charge density and distribution of reactive functional groups. Furthermore, 

tissue or cell selectivity can be introduced by incorporating ligand-binding molecules with 

nanohybrids. Another important property to consider in the development of these 

nanohybrids is the affinity of the biopolymer and nanoparticle (NP) to self-assemble, as this 

step is fundamental in defining the final stability of the biocomposite and its loading 

efficiency. In fact, the corresponding 3D arrangement of the nanohybrid substrate can also 

influence the loading mechanisms and release behavior of its cargo.

This review focuses on the recent strategies available to engineer smart nanohybrids in order 

to achieve a better control over drug delivery as well as gene therapy (Figure 1). The first 

part of the review will focus on smart drug delivery approaches for the treatment of cancer, 

followed by a discussion including innovative regenerative medicine strategies that utilize 

biological gene delivery vectors. Finally, an overview over the possible clinical translation of 
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these nanohybrid materials is also proposed to delineate their future in regards to drug and 

gene delivery.

2. Nanohybrids for Drug Delivery

Nanohybrids can be categorized according to the types of the biomaterials employed. The 

selection of material dictates the types of interaction between the material and the drug, 

influencing the corresponding loading efficiency. For example, nanostructures carrying 

positive or negative charges can adsorb ionic drugs on their surface by ion exchange. At the 

same time the presence of planar nanostructure sheets composed of sp2 carbon can load 

therapeutic agents with steroidal or aromatic structures by π–π stacking. Alternatively, 

nanoparticles carrying nucleophilic groups can be exploited to form either hydrogen or 

covalent bonds with the loaded cargo, modulating the kinetic release profile. The following 

sections focus on the developments of carbon-based nanohybrids for cancer therapy. 

Moreover, a discussion on hybrid nanoclays and other types of innovative nanohybrids will 

be provided to highlight the future trends of these promising carriers.

2.1. Carbon-Based Nanohybrids for Drug Delivery

CNTs represent one of the possible materials to engineer nanohybrids into drug delivery 

carriers. CNTs are composed of single or multiple layers of graphene sheets rolled into 

cylindrical tubes of sp2 carbon, which are capped at both ends with networks known as 

fullerenes. These fullerenes can serve as drug delivery platforms since they can be easily 

modified to improve their water solubility and partially avoid the formation of 

aggregates.[11]

CNTs are categorized by structure as either single walled carbon nanotubes (SWNTs) or 

multi-walled carbon nanotubes (MWNTs). Their potential in this field is in part accredited to 

their affinity towards internalization by cells due to their unique nanostructure properties. 

CNTs are able to penetrate cells using several endocytosis pathways or simply by diffusion 

through the lipid bilayer. The route of cellular uptake is attributed to the tube length or the 

presence of polymeric coatings on their surface.[13] Once internalized, they generally 

localize in cell endosomes and lysosomes[14] or in other subcellular compartments including 

mitochondria[15] and the nucleus.[16]

Due to their poor thermodynamic stability in water, CNTs have a strong tendency to 

stabilize into aggregates. For this reason, side wall functionalization of CNTs is commonly 

performed to decrease the extent of bundle formation among tubes and improve their 

biocompatibility. Since the long term cytotoxicity of CNTs is a widespread concern for 

researchers and scientists, CNTs are most commonly hybridized with biodegradable 

polymers to increase their biocompatibility and decrease their ability to form reactive 

oxygen species inside cells.[17]

Drugs can bind with CNTs through different mechanisms such as physical absorption or 

covalent bonding with the functional groups on the walls of the CNTs.[18,19] Moreover, the 

introduction of a polymeric coating can also provide additional drug binding sites by the 

formation of ester or amide bonds, which are generally cleaved by hydrolysis in acidic 
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environments.[20,21] Since the microenvironments of solid cancerous tumors in the human 

body have a slightly acidic pH, a polymeric nanohybrid carrying therapeutic cargo would 

only release the drug in the hypoxic regions localized to tumor environments. In this sense, 

Liu et al. have proposed a system consisting of branched polyethylene glycol (PEG) chains 

on SWNTs to deliver paclitaxel (PTX) in vivo in mice. PTX was conjugated with PEG using 

a cleavable ester bond to form a water-soluble SWNT–PTX conjugate, and as a result, the 

nanohybrid showed higher efficacy in suppressing tumor growth in a breast cancer model 

with respect to the control treatment with Taxol, a chemotherapeutic agent used 

clinically.[21]

CNTs can also be surface-modified to introduce specific macromolecules, including growth 

factors, to improve the selectivity of action during cancer treatment. In a study by Bhirde et 

al., cisplatin, a common anticancer agent, was bound with epidermal growth factor (EGF) on 

SWNTs to target squamous cancer cells. In comparison to unmodified cisplatin, the 

hybridized drug demonstrated a signficantly higher efficacy in targeting and killing 

tumorous cells in vivo.[22]

Aside from covalent bonding, drugs and bioactive molecules can also be loaded onto the 

surface of the CNTs by π–π stacking. In another study by Huang et al., doxorubicin (DOX) 

was loaded onto the surface of SWNTs by π–π stacking interactions followed by inclusion 

of chitosan conjugated with folic acid (FA). Due to the higher expression of folate receptors 

on cancer cells, folic acid was proposed as a targeting mechanism. An increase in the release 

of DOX was achieved at a pH of 5.3 as a result of the reduced chemical interactions between 

doxorubicin and the surface of the CNTs in the acidic environment. Most importantly, the 

encapsulation of SWNTs with chitosanfolic acid provided a nanohybrid with better control 

over the release of DOX. The main factors behind this improvement are the additional 

diffusion through the chitosan shell and the possible hydrogen bonding between folic acid 

and DOX, which can hinder the diffusion of the drug from the nanohybrid.[23]

Among our research, an alternative solution has been proposed to improve the efficiency of 

drug loading onto CNTs using a lipid–drug approach.[24] Specifically, PTX was conjugated 

with docosanol and adsorbed onto the surface of SWNTs. Folic acid was also conjugated 

using the same strategy (Figure 2A). Our novel nanohybrid improved the effectiveness of 

PTX in vivo in a human breast cancer xenograft mouse model. Analogously, in a more 

recent study, we have proposed the conjugation of PTX with human serum albumin (HSA) 

nanoparticles which were further linked on the surface of SWNTs modified with a 

bifunctional PEG spacer.[25] The PTX delivered with the nanohybrid composed of albumin 

and SWNTs demonstrated a greater reduction in the activity of breast cancer cells compared 

to the PTX delivered by HSA nanoparticles.

In addition to CNTs, GO is another unique nanomaterial composed of sp2 carbon sheet with 

specific physical and chemical properties that have been exploited for enhanced drug 

delivery, especially in cancer therapy.[26,27] The large superficial area combined with the π-

conjugated structure allows higher loading efficiency of aromatic compounds through π–π 
interactions. At the same time, the surface can be modified with ligands to introduce 

selective targeting. Furthermore, GO in the reduced form also presents high optical 
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absorption in the near infrared spectrum, and this property has been explored for 

photothermal cancer treatments.[28,29]

However, GO presents a series of drawbacks including poor colloidal stability due to its 

tendency to aggregate in physiological conditions and its natural affinity for proteins.[30] To 

overcome these limitations, GO can be modified with water-soluble molecules to improve 

biocompatibility and colloidal stability in the presence of salt and serum. Erqun et al. have 

recently proposed a novel DOX delivery platform composed of GO coated with hyaluronic 

acid (HA) as a carrier of DOX.[31] The anticancer drug was loaded through π–π interactions 

onto the surface of GO followed by chemical conjugation with adipic acid hydrazide-

modified HA. The complex showed higher stability, drug loading efficiency, 

biocompatibility and also pH sensitivity with a sustained release of DOX.

Among other natural polymers, dextran has also been widely used as agent to improve the 

efficacy of GO as a drug carrier. Jin et al. have proposed an innovative nanohybrid of GO 

and hematin-modified dextran. The hematin–dextran conjugate self-assembled with GO 

through π–π interactions and the dextran alone improved the overall stability. The group 

demonstrated that the nanohybrid exhibited improved water solubility as well as better 

cytocompatibility with respect to GO alone. When conjugated with DOX, the nanohybrid 

showed a greater ability to treat drug-resistant cancer cells (Figure 2B).[32]

GO can also be functionalized with synthetic polymers that contain both hydrophobic 

moieties capable of interacting with the carbon sp2 sheets and hydrophilic blocks to increase 

their water solubility. In this sense, Hu et al. have proposed a nanohybrid with reduced GO 

and the amphiphilic pluronic F127 capable of loading DOX with high efficiency and pH 

sensitivity.[33]

Another example of carbon-based nanomaterials is NDs, which possess unique physical and 

chemical properties that render them ideal for use in nanocomposites. NDs have a truncated 

octahedral morphology and highly tunable surface properties that can be oxidized or reduced 

to modulate the presence of reactive functional groups. These functional groups, such as 

hydroxyl groups (-OH) or carboxylic groups (-COOH), can be utilized to establish hydrogen 

or covalent bonds with drugs and polymers. Moreover, the natural fluorescence of NDs can 

be used to monitor their location within cells, which is particularly useful when considering 

cell therapy with hybridized anticancer drugs. In a study by Huynh et al., different strategies 

have been proposed to load cisplatin on the surface of ND in the presence or absence of 

polymer coatings (Figure 2C). The nanohybrid systems outperformed the non-coated ND in 

terms of cytotoxicity against the ovarian cancer cell line A2780 because of the higher 

cellular uptake enabled by the polymer coating.[34] Xiao et al. also reported that the 

combination of a synthetic polymer coating can enhance the therapeutic effect of NDs 

loaded with DOX (ND–DOX). The synthetic polymer used in this study improved the 

dispersibility of the ND–DOX complex, allowing a higher loading efficiency and localized 

delivery of DOX to the nuclei of cancer cells.[35] In another interesting approach, Moore et 

al. designed a ND–lipid hybrid by rehydration of lipid thin films containing cholesterol and 

biotinylated lipid using ND solutions loaded with epirubicin. The new formulation was then 

targeted using biotinylated antibodies (anti-EGFR) to target and successfully treat triple 
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negative breast cancer. This platform could also be applied to the treatment of many other 

types of cancer simply by changing the type of antibody exposed on the surface of the ND–

lipid nanohybrid.[36]

These few examples demonstrate the versatile and tunable properties of carbon-based 

nanohybrids that allow them to serve as smart and environmentally responsive delivery 

agents, especially for cancer therapies. Aside from carbon-based nanohybrids, other types of 

nanohybrids composed of inorganic compounds such as clay minerals are also very 

promising candidates and their potential in drug delivery will be described briefly in the 

following section.

2.2. Clay Nanohybrids for Drug Delivery

Clay minerals are silicates of aluminum or magnesium that are organized in layered or 

microfibrous tetrahedral and octahedral structures. Layered clays are classified as either 

natural smectites, such as montmorillonite and hectorite, or synthetic smectites including 

laponite.[6] To realize the importance of nanoclays in drug delivery and as building blocks 

for nanohybrid systems, an understanding of their chemical structure is imperative. These 

smectite clays are organized in two tetrahedral silica sheets, with the internal sheet 

composed of Al3+ or Mg2+ arranged in an octahedral structure.[37] Due to their composition, 

smectite clays are a hydrophilic material with an internal layer that is freely accessible to 

water molecules, allowing surface conjugation or intercalation with hydrophilic polymers. 

Among the smectite family, laponite is the clay most commonly investigated in combination 

with a variety of natural and synthetic polymers due to its higher surface area and ability to 

establish strong interactions with guest compounds. The presence of laponite can serve as a 

crosslinker and as a thickening agent in a polymeric network, which can then be used for the 

fabrication of injectable or prefabricated scaffolds for drug delivery (Figure 3).[38–43] 

Moreover, the charges on the laponite surface are negative while the edges of the 

nanoparticles are positively charged and pH dependent which can be useful for the design of 

pH-sensitive nanohybrid systems.[44] In a study by Gonçalves et al. a pH-responsive 

laponite-alginate nanohybrid formulation was investigated for the delivery of DOX. DOX 

was first loaded onto laponite nanodiscs through electrostatic interactions and then coated 

with alginate. The system showed pH sensitivity and a sustained in vitro release.[45] Using a 

different approach, Wang et al. proposed the design of a nanocomposite formulation based 

on laponite hybridized with a polyethylene glycol and polylactic acid copolymer (PEG–

PLA) as pH-sensitive carriers of DOX.[46] In this case, a self-assembling process of the 

amphiphilic PEG–PLA copolymer on the surface of the laponite was achieved. PEG served 

as a protective shell to enhance the stability of the nanohybrid system and the hydrophobic 

region of the copolymer functioned as an anchor on the surface of the loaded nanodiscs. The 

study concluded a high loading efficiency of DOX combined with a pH-sensitive release 

profile.

Apart from the smectite group, there are other clays of interest that display different 

morphologies such as sepiolite and halloysite clays.[47] Sepiolite is a fibrous clay composed 

of an octahedral sheet of magnesium oxide/hydroxide placed between two tetrahedral silica 

layers. The periodic inversion of the SiO4 tetrahedron creates a regular discontinuity of the 
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silica sheets along the axial extension of fibers, forming a structural tunnel which can be 

used to allocate drugs. Sepiolite presents a high surface density of silanol (Si-OH) groups on 

its external fibers that interact with polymers through hydrogen bonds to form nanohybrids 

as carrier of drugs.[48] On the other hand, an alternative morphology is displayed by 

halloysite clays which are alumosilicate sheets rolled in the form of tubes. With respect to 

smectite clays, they do not require exfoliation as they can be readily dispersed into 

polymeric solutions.[49] Their diameter is much larger than that of CNTs, which gives 

halloysite clays a high loading capacity for polymers and globular proteins. Moreover, the 

different chemistry in the external and internal regions of the tubes provides versatility in 

terms of chemical modifications. Drugs can be loaded using several strategies including the 

following: intercalation, adsorption onto the external and internal wall of the tubes, or 

internal loading followed by crystallization/condensation.[50] Nanohybrids composed of 

these clay nanotubes represent a very promising drug delivery platform for a vast array of 

drugs including antibiotics[51] and chemotherapeutic drugs.[52]

Finally, layered double hydroxides (LDHs) are another emerging class of clays that differ 

from the types previously mentioned, as they possess a higher charge density and anion 

exchange ability.[53] They can be functionalized with negatively charged polymers, and the 

layered structures within the resulting nanohybrid can be loaded with anionic drugs and 

compounds through ion exchange. By these very same mechanisms, LDHs can also be used 

to deliver genes.[54] Drugs and biomolecules can be bonded to these clays following several 

different approaches including exfoliation-restacking of the layers, intercalation, and 

pillaring reactions.[55] Among other studies, Kim et al. demonstrated that LDHs can be 

utilized as effective carriers of otherwise insoluble drugs, such as the anti-cancer drugs 

methotrexate (MTX) and 5-fluorouracil (5-FU). The in vitro studies between the drug carrier 

and cervical adenoma cancer cells verified that the LDH-mediated delivery of the drugs 

caused an immense reduction in tumor cell viability compared to the delivery of the drugs 

alone. These results are attributed to the enhanced cell internalization of the drugs facilitated 

by the LDH carriers.[56] In addition, cell or sub-cellular targeting can be introduced by the 

linkage of specific biomolecules such as folic acid. In a recent study by Yan et al., LDH 

nanoparticles were prepared by co-precipitation and covalent conjugation with folic acid. 

The modified LDH nanohybrids loaded with MTX showed an increased capacity to 

penetrate cell nuclei, resulting in the improved efficacy of MTX.[57] A more extensive 

description of other possible strategies in drug delivery using LDH nanohybrids can be 

found in other excellent reviews.[58–60]

2.3. Lipid-Polymer-Based Nanohybrids for Drug Delivery

Another important class of emerging nanohybrids is that of polymers and lipids, which are 

generally organized in a multilayered core–shell structure.[61] These nanocarriers combine 

both properties of liposomes and polymeric nanoparticles, to exhibit a higher drug loading 

efficiency and physical stability once administered in vivo.[62] The enhanced properties can 

be attributed to their unique composition, which generally consists of a polymeric drug 

loaded core enclosed in a lipid shell and surrounded by an additional layer of PEG. The PEG 

coating enables a prolonged in vivo circulation and increased steric stabilization. The 

polymer core can be composed of natural or synthetic polymers with different degrees of 
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crosslinking, allowing a precise control over the release profile of the loaded cargo. In a 

recent work by Petralito et al., the polymeric core was designed using a photo-crosslinked 

hydrogel composed of polyethylene glycol–dimethacrylate (PEG–DMA) that improved the 

mechanical stability of the lipid bilayer and modified the release kinetics of the model cargo 

with respect to liposomes composed of hydrogenated soybean phosphatidylcholine.[63] 

Additional structural integrity can be provided by modifying the lipid chemical structure, 

rather than the polymer core, leading to the fabrication of hybrid vesicles known as 

cerosomes.[64] In this case, the hybrid inorganic–organic bilayer is synthesized by the self-

assembly of organoalkoxysilanes which resemble the chemical structure of lipids.[65] These 

nanocarriers present higher stability towards surfactant-induced dissolution and can be used 

for the delivery of anticancer drugs with a better control over their release behavior in 

respect to conventional liposomes.[66] Apart from improved mechanical integrity, lipid-

polymeric nanohybrids can be precisely oriented to offer targeted delivery to localized 

tissues or cells as in the case of cancer treatment. To achieve this important goal, the hybrid 

system can be loaded with magnetic nanoparticles which can be used as magnetic resonance 

imaging (MRI) probes or as targeting devices in the presence of applied magnetic fields. As 

reported by Yang et al., the anticancer drug DOX and the monodispersed magnetic 

nanocrystals (Fe3O4) were simultaneously encapsulated within an amphiphilic block 

copolymer to form multifunctional magneto-polymeric nanohybrids (MMPNs) for the 

treatment of breast cancer. The presence of the magnetic nanocrystals enabled MRI 

detection in in vitro and in vivo models.[67] In a more recent study, citrate-stabilized ferrite 

nanoparticles (CA–MFNPs) were linked to polyethyleneimine (PEI), which was crosslinked 

with Pluronic F127 copolymer using ethyldicarbodiime and N-hydroxysuccinimide (EDC/

NHS) chemistry. Targeting of DOX to human cervix adenocarcinoma cells was achieved by 

linking FA to the hybrid system that was uptaken through FA receptors via endocytosis.[68] 

The presence of magneto-nanoparticles can be used as smart approach to control the amount 

of drug released simply by regulating the intensity of the external magnetic field. 

Specifically, on and off release can be achieved by inducing motions of the magnetic 

nanoparticles embedded in the nanohybrid lipid system, enabling an on-demand release of 

the loaded cargo.[69] While the major focus thus far has been on nanohybrids for cancer 

therapy, many researchers are applying similar polymeric nanohybrids towards treatments 

for autoimmune disorders. In one such study, Carambia et al. have assessed the in vivo 

efficacy of antibody-targeted, polymer-coated nanoparticle carriers to treat autoimmune 

encephalomyelitis (AE). In this study, superparamagnetic Fe2O3 nanoparticles were coated 

with an amphiphilic polymer and conjugated with autoantigen peptides prior to 

administration to an experimental AE mouse model. This research concluded that the 

peptide-conjugated nanohybrids selectively targeted and delivered the autoantigen peptide to 

the hepatic endothelial tissues affected by the autoimmune disease.[70] This selective 

targeting mechanism could also be employed for the treatment of a variety of other 

autoimmune diseases that are currently difficult to cure.

3. Nanohybrids for Gene Therapy

Supplementary to drug delivery, gene delivery is an alternative strategy for diagnosing and 

treating diseases and other clinical ailments. Specific genes can be delivered and expressed 
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within cells to utilize their native machinery to produce therapeutic proteins. These therapies 

have not had a significant clinical impact for the treatment of human diseases thus far 

because of suboptimal gene expression capabilities and biosafety concerns resulting from 

the selection and design of vectors.[71] Genetic material can be delivered to cells by 

physical, chemical, and viral methods. Physical and chemical methods are often referred to 

as nonviral gene delivery, as they do not utilize native biological vectors such as viruses, but 

instead rely upon mechanical or chemical procedures to enable the transfer of genetic 

material across cell membranes. Both nonviral and biological (viral) gene delivery 

technologies hold promise for future clinical treatments, such as in the repair of damaged 

cardiac tissue after myocardial infarction but further advances are necessary for their clinical 

translation. In addition to gene therapy by means of therapeutic protein expression, gene 

silencing by RNA interference is a recent discovery that also has a vast therapeutic potential 

for the treatment of cancer, autoimmune diseases, and neurodegenerative diseases such as 

Alzheimer’s. Small interfering RNA (siRNA) are 20–25 bp double-stranded RNA that form 

RNA-induced silencing complexes (RISCs) upon entering the cytoplasm of a cell. 

Subsequently, these RISCs pair with and cleave the complementary mRNA. By this 

mechanism, the protein expression of a specific gene sequence can be hindered by effective 

siRNA delivery. Current gene silencing therapies are limited by the fact that siRNA are 

easily inactivated by serum complement and they do not readily diffuse across the cell 

membrane.[72] As a result, their therapeutic effects are diminishing as they cannot 

accumulate in target tissues. Nanoparticle polymer and lipid vectors have been used to 

overcome these factors due to the enhanced cell penetration and nucleic acid shielding 

effects they provide.[73] The following section will focus on the emerging trends developed 

to enhance the efficiency and therapeutic potential of chemical vectors and nonpathogenic 

viral vectors for gene delivery. Additionally, this section will review the current research 

strides in the use of chemical vectors for gene silencing therapies.

3.1. Carbon-Based Polymeric Nanohybrid DNA Vectors

Chemical vectors are nonviral vectors that are desirable for clinical applications given their 

minimal immunogenicity. However, nonviral platforms historically have very low 

transfection efficiencies compared to viral systems and as a result are often incapable of 

eliciting gene expression at therapeutic thresholds. Common chemical vectors use cationic 

lipids or polymers to deliver genes. The shortcomings of these systems primarily arise from 

their inability to diffuse across the cell membrane and the instability of the genetic cargo.[74]

Recently, biofunctionalized carbonbased nanohybrids have been proposed as vectors that 

overcome these principle issues.[75] The unique properties of carbon nanomaterials enable 

the delivery of genetic material across the cell membrane into the cytosol and therefore 

enhanced gene expression. The local retention time of nanovectors can be even further 

augmented by controlled delivery from hydrogels. Controlled gene delivery is vital to the 

success of tissue-specific therapies. Our studies have shown GO in conjunction with PEI is a 

viable delivery vehicle for plasmid DNA and therapeutic effects are prevalent when the GO–

PEI–DNA nanohybrids are delivered by methacrylated gelatin hydrogels. When injected 

intramyocardially in a rat model of myocardial infarction, vascular endothelial growth factor 

(VEGF) plasmid expressed by the GO vector significantly restored cardiac function through 
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the activation of neoangiogenic pathways. Thus, the hydrogel facilitated in vivo localized 

gene expression in cardiomyocytes within periinfarct regions.

Another strategy to maximize the transfection efficiency of a vector is to modify the outer 

surface of highly functional carbon nanoparticles with biologically responsive molecules 

such as a peptides. Nanomaterials that are otherwise biologically inactive can be further 

hybridized into stimuli-responsive, biointeractive materials. Graphene oxide, for instance, 

can be functionalized with cell-adhesive RGD peptides to grant the nanoparticle an affinity 

for cell binding.[76] This is an especially attractive feature for nanohybrid vectors, as 

interfacing the vector with its biological environment plays a large role in optimizing 

transfection. Our investigations have highlighted the utility of functionalizing nanovectors 

with the cell-penetrating transactivating transcriptional activator (TAT) peptides. TAT is an 

endosomolytic peptide derived from the HIV-1 virus and promotes both cell membrane 

penetration and endosomal escape.[77] To demonstrate this concept, a carbon nanotube and 

polyacrylic acid (PAA) nanovector was noncovalently conjugated with TAT/DNA 

nanoparticles. The vector dually expressed VEGF and angiopoeitin-1 (Ang1) cDNA. To 

apply these components towards a therapeutic model, the CNT–TAT/DNA hybrids were 

embedded in fibrin hydrogels and incorporated into a vascular stent device using layer-by-

layer gelation assembly.[78] The hydrogel localized the expression of the transgenes, and the 

TAT peptides further increased the bioactivity of the stent by augmenting transfection 

efficiency. When employed in vivo in a canine femoral artery, the nanohybrid stent 

outperformed bare metal stents in terms of arterial re-endothelialization (Figure 4).[78] In 

addition to delivery of double-stranded, plasmid DNA, nanohybrids such as CNTs 

functionalized with PEI can efficiently deliver siRNA given the high loading capacity and 

cell penetrative abilities of CNTs in conjunction with the endosomolytic attributes of 

PEI.[79] Other groups have validated the efficiencies of alternative carbon nanoparticles, 

such as nanodiamonds, for use as hybrid siRNA vectors.[80,81]

3.2. Clay-Based Nanohybrid Vectors

As discussed previously, nanoparticle clays possess unique surface chemistries, high loading 

capacities, and the ability to form self-assembling hybrids for environmentally responsive 

drug delivery systems. These same properties can be exploited to develop self-assembling 

gene delivery nanohybrids. Layered double hydroxides are a class of anionic clays that can 

be directly loaded with nucleic acids, DNA, and RNA by intercalation. By anion exchange 

mechanisms, linear DNA fragments as large as 8000 bp and plasmid DNA are reported to 

self-assemble with LDHs to form LDH–DNA nanohybrids.[82] Ladewig et al. studied the 

transfection efficiency of LDH–DNA nanohybrids across various cell lines and determined a 

high efficiency accompanied by minimal to no cytotoxicity, in comparison to standard lipid-

based carriers.[83] In fact, LDH complexes are proposed as favorable vectors over other 

nanoparticle vectors because rather than accumulating in cells and tissues upon 

internalization as observed with carbon-based and polymeric nanoparticles, LDHs instead 

dissolute into noncytotoxic ions.[82,84]

Recently, LDHs have been extensively applied in vitro as siRNA vectors for gene silencing. 

LDH hybrids, for example amine-functionalized, silicon dioxide-coated LDH–siRNA 
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complexes, are often surface modified to improve nanoparticle dispersion and therefore 

increase transfection efficiency.[85] LDH siRNA vectors have also been coupled with 

hydrogel scaffolds that could be utilized for localized regeneration of cartilage and the 

treatment of osteoarthritis by serving not only as cell scaffolds, but also to strongly express 

siRNA and effectively silence the human GAPDH gene.[86] LDHs have furthermore shown 

the ability to simultaneously function as both drug carriers as well as siRNA or DNA 

vectors. Li et al. have shown the vast therapeutic potential of this platform by studying the 

co-delivery by LDH complexes of chemotherapeutic drug 5-fluorouracil and delivery of 

apoptotic siRNA, concluding great success in its preclinical stages.[87] A platform such as 

this one, capable of both gene silencing and drug delivery, can be used to simultaneously 

suppress a pro-tumorigenic gene and deliver an anti-cancer drug to treat drug resistant 

tumors.

3.3. Biodegradable Polymeric Nanohybrid Vectors

Despite the promising outlook of the aforementioned nanohybrid siRNA vectors, recent 

concerns regarding nanoparticle toxicity have encouraged researchers to develop 

biocompatible and biodegradable nanovectors for siRNA delivery. These biodegradable 

nanohybrid vectors have been formulated with low molecular weight polymers[88] and 

polysaccharides such as dextran[89] and chitosan.[90] Proteins endogenous to the human 

body can also be used to deliver genetic cargo. Our reports have revealed for the first time 

the potential of PEI-coated human serum albumin nanohybrids as siRNA vectors.[91] 

Albumin, a binding protein abundant in human plasma, is ideal for in vivo delivery 

applications since it has a high binding affinity yet it lacks immunogenicity and is readily 

metabolized in the liver.[92] Results indicate that the PEI–albumin nanohybrids can transfect 

breast cancer cells in vitro with high efficiency and minimal cytotoxicity.[91]

3.4. Viral Gene Therapy with Polymeric Nanohybrids

Biological vectors, such as retrovirus, adenovirus, lentivirus, and adenoassociated virus 

(AAV), are also commonly used vectors for gene therapy applications. Viruses are highly 

efficient vectors because their capsids are surrounded by viral envelopes that enable the 

transduction of viral DNA across cell membranes. The development of therapeutic gene 

delivery applications with these viruses is hindered by issues regarding biosafety, 

immunogenicity, and potential of insertional mutagenesis.[93,94] In contrast to mammalian 

viruses, insectoriginated baculoviruses (Bac) are nonpathogenic to humans since they are 

unable to replicate in mammalian cells. However, the baculovirus still possesses viral 

envelope glycoproteins that facilitate cell membrane penetration and can transfer genetic 

material within cells. These attributes present the baculovirus as an ideal viral vector. In our 

investigations, we have explored the efficacy of baculoviral nanohybrids for stem-cell–gene 

therapies, localized gene delivery, and therapeutic intervention within biomedical devices. 

Beyond the topics of this discussion, hybridized baculoviruses are also excellent vectors for 

the delivery of siRNA, which is thoroughly reviewed by Makkonen et al.[95]

We have found that the baculovirus can be used to enhance cell-based therapies. An 

emerging therapy for restoring damaged cardiac tissue after myocardial infarction is 

transplantation of multipotent stem cells into infarct regions. The restorative capacity of 
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many of these therapies is not sufficient to warrant the use of this type of treatment in a 

clinical setting.[94] Many groups have improved the success potential of this therapy by 

genetically modifying stem cells prior to transplantation, but low transfection efficiency with 

nonviral vectors and biosafety concerns with viral vectors are current downsides.[96] The 

baculovirus by itself has a low transduction efficiency in vivo since it is susceptible to serum 

inactivation.[97] To mitigate this effect, baculoviruses can be surface modified with polymers 

such as polyamidoamine (PAMAM) dendrimers or PEI. We have found that baculoviruses 

noncovalently hybridized with PAMAM display increased transduction efficiency due to the 

properties of the dendrimer. PAMAM–baculovirus nanohybrids carrying VEGF transgene 

were able to efficiently transduce human adipose derived stem cells (hASCs) resulting in 

overexpression of the pro-angiogenic gene. Following the injection of the transduced hASCs 

into infarct sites of a murine myocardial infarction model, the infarct regions displayed 

increased vascularization and overall improved cardiac function compared to the control 

therapy with unmodified hASCs. Furthermore, transient expression of VEGF was observable 

for up to two weeks upon implantation.[98] Other groups have also implemented similar 

baculovirus-enhanced cell therapies for the treatment of myocardial infarction. Yeh et al. 

have recently developed VEGF-expressing, ASC cell sheets, genetically enhanced by 

hybridized baculoviruses. The study concluded that the transduced cell sheets significantly 

reversed the damage caused by myocardial infarction.[99] Other groups have also used 

baculovirus nanohybrids to modify stem cells to overexpress osteogenic and angiogenic 

growth factors for in vivo bone regeneration.[100,101] As with the nonviral applications, 

hydrogels can also be utilized as controlled and sustained release platforms for viral 

nanohybrid vectors. To illustrate this concept in a potential cell-based therapy, PAA coated 

CNTs hybridized with baculoviruses were embedded in a denatured collagen gel. The CNTs 

were introduced to both extend the release of the recombinant baculoviruses and to enhance 

the hydrogel’s mechanical properties. The in vitro interactions between this hydrogel 

scaffold and rat bone marrow stromal cells (rBMSCs) revealed a sustained release profile of 

baculovirus from the hydrogel and a high transduction efficiency over two weeks.[102]

Since hydrogels facilitate sustained and localized gene delivery, and due to their versatile 

mechanical and chemical properties, they are ideal platforms for introducing baculovirus 

nanohybrids to biomedical devices. Analogously to our previous studies on CNT nanohybrid 

stents, we applied baculovirus nano-hybrid hydrogels to vascular stents to demonstrate the 

clinical potential of this viral gene therapy. To address the challenge of serum inactivation 

and to prolong transgene delivery, PAMAM–baculovirus complexes were microencapsulated 

in poly (glycolic-co-lactic acid) (PLGA). The microcapsules were subsequently applied to 

the stent within layers of a fibrin hydrogel. This fibrin-coated stent was implanted in canine 

denuded femoral arteries, and the pro-angiogenic effects of the baculovirusmediated VEGF 

expression were observable with prominent endothelial regeneration in injury sites, four 

months post-implantation. The fibrin hydrogel successfully sustained release of the 

microencapsulated nanohybrids, resulting in localized and controlled transgene expression 

(Figure 5).[103]
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3.5. Combined Gene Therapy Strategies with Nanohybrids

Integrating nonviral vectors with viral vectors into a multipurpose delivery system is an 

effective strategy that combines the features of both types of vectors to synergistically 

maximize the potential of a gene therapy. Chemical vectors are advantageous due to their 

ease of production and minimal immunogenicity, yet their therapeutic effects are not as 

pronounced as viral vectors. The nonpathogenic baculovirus can express high transduction 

efficiencies, but not to the same extent as mammalian viral vectors. We developed a hybrid 

recombinant baculovirus linked with nonviral TAT/DNA nanoparticles to combine the 

strengths of both gene delivery platforms. Aimed towards myocardial therapy, we 

investigated the potential of a baculovirus expressing transgene Ang1 noncovalently linked 

with Ang1-expressing TAT peptide nanoparticles. The resulting Bac–NP nanohybrid 

displayed higher transduction efficiency and Ang1 expression than each vector alone. The 

angiogenic potential of this heightened Ang1 expression by Bac–NP system was studied in 

vivo in rat myocardial infarction models. Two weeks following the intramyocardial injection 

of the nanohybrid to infarct sites, the Bac–NP vector demonstrated sustained and localized 

Ang1 expression, up to 1.75 higher than that of the recombinant baculovirus alone. Cardiac 

repair was noted along with a reduction in infarct size.[104]

We further investigated the potential of the Bac–NP nanohybrid in genetically enhancing 

stem cell therapies. Bac–NP constructs expressing Ang1 both virally and nonvirally were 

used to transduce hASCs, which were implanted intramyocardially in rat models of 

myocardial infarction. The nanohybrid vectors effectively induced Ang1 overexpression 

from the hASCs, and just as in the previous study, transgene expression was significantly 

higher than baculovirus or TAT/DNA vectors alone. The transduced hASCs, one month post-

infarction, restored cardiac function, reduced infarct size, and promoted vascular density in 

the infarct regions. The success of this combined viral/nonviral gene delivery platform in 

genetically engineering stem cells confirms the clinical relevance of this unique platform in 

cell-based therapies (Figure 6).[105]

4. Prospects and Challenges

In recent years, bioengineered nanohybrids have come forth as a promising new therapeutic 

strategy for both drug and gene delivery. However, nanohybrids still face several challenges 

which are hindering the translation of these treatment platforms from bench to bedside. The 

concerns of long term accumulation, distribution, and cytotoxicity of nanoparticles present a 

major hurdle for the use of nanohybrids in the human body. This particularly holds true for 

carbon-based nanohybrids, as in the case of graphene oxide, which can cause in vivo 

mutagenesis at high concentrations.[106] In addition, the majority of the studies regarding 

their potential toxicity have been carried out on rodent animals and these results cannot be 

easily translated to primates and humans.[107] The current studies on biodistribution and 

accumulation of nanoparticles are not sufficient to predict the long-term effects of 

nanohybrids on the human body.[108]

On the contrary, numerous polymeric nanohybrid DNA vectors are currently undergoing 

clinical trials, primarily for cancer therapies and vaccines. A vast array of siRNA 

nanovectors are also currently being tested in clinical trials, with lipid or polymer conjugates 
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delivering siRNA to silence genes responsible for diseases ranging from macular 

degeneration to advanced cancers. Yin et al. have provided an in depth analysis on these 

recent clinical developments.[109]

Both carbon and clay-based nanohybrid vectors have shown favorable effects in vivo, but the 

materials must be tailored to optimize desired therapeutic effects. A greater understanding of 

the manner by which a nanocomposite’s biological interactions can impact the loading and 

release of genetic material is necessary to unlock their vast potential in tissue or disease-

specific treatments. Nuclear uptake of genetic material, which is essential for successful 

transfection, is a rate limiting step in kinetic gene expression models, and the ease of nuclear 

uptake varies according to the cell type and cell–material interactions.[110]

Baculoviral nanohybrids, on the other hand, are not under clinical development for human 

gene therapy at the present moment. While over 50% of clinical trials involving gene therapy 

utilize viral vectors, none of them employ the baculovirus. However, many pre-clinical 

studies have recently shown their potential, and upon further study of the effects of this virus 

in the human body, clinical trials are imminent.[102] From our own studies, we have 

concluded that baculovirus nanohybrids can be tailored for use in a wide variety of 

applications, ranging from gene expression in biomedical devices such as stents, to 

injectable hydrogels capable of delivering angiogenic genes for treatment of myocardial 

infarction. We envision from our work and from other research group studies that the 

intelligent design of baculoviral nanohybrids can give rise to an extraordinary variety of 

applications within the field of regenerative medicine. It is important to note that there is no 

universal nanohybrid platform that is superior for all applications. Each nanohybrid must be 

carefully tailored to best serve its intended purpose in a new device or treatment.

Future considerations must be taken in the design of new nanohybrids targeted towards 

clinical use. Since nanoparticle toxicity is a major concern, researchers must continue to 

study the effects of nanoparticle accumulation in the human body, especially for the 

development of nanohybrids intended for in vivo use. In addition, researchers can shift 

special focus to developing nanohybrids of purely biodegradable materials, as discussed 

previously regarding layered double hydroxides and albumin-based carriers for drug and 

gene delivery. Beyond the concerns of cytotoxicity, studies have yet to be conducted on 

characterizing the pharmacokinetics of nanohybrid delivery in the human body. For instance, 

the nanodiamond–polymer nanohybrid developed by Moore et al.[36] effectively targets and 

treats tumors in a small rodent model, but the efficacy and reproducibility of such a 

treatment in humans is virtually unpredictable at the present moment. Additionally, the study 

of hybridizing alternative nonpathogenic, biologically derived vectors, such as 

bacteriophages and virus-like particles, holds great merit in creating innovative and 

advanced gene delivery strategies.[74] Genetically engineered bacteriophages, for example, 

can be used to express genes in animals and humans for applications ranging from cancer 

treatments[111] to promoting vasculogenesis within 3D bone regeneration scaffolds.[112]
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5. Outlook

Nanohybrid transporters offer a promising alternative with respect to other technologies for 

the preparation of smart devices capable of selective targeting in drug deliver and gene 

therapy. As discussed in the previous sections, they represent a field of research that holds 

the potential to improve the outcome of existing therapies by reducing the side effects 

associated with established treatments as well as increasing the effectiveness of the 

therapeutic agent. However, as for any new technologies that seek to improve the field of 

nanomedicine, several critical issues are still present and a continued refinement of their 

properties is required for their clinical success in the near future. One of these issues is the 

safety profile of nanohybrids within the human body. For this reason, biodistribution, 

accumulation and cytotoxicity in different organs and tissues are important clinical problems 

that need to be considered to better clarify their potential clinical use. In addition, the 

interactions of nanohybrids with proteins and components of the immune system is another 

essential aspect that needs particular attention. It is thus imperative to consider all of these 

issues and potential risks in the development of new nanohybrids in order to not only 

improve their design and efficacy but at the same time ensure that they do not pose any 

cytotoxic effects in vivo.
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Figure 1. 
Schematic representation of nanohybrid strategies to promote a targeted delivery of both 

drugs and genetic material. Nanohybrids combine both polymeric and other nanomaterials to 

enhance the therapeutic efficacy of existing therapies in both drug delivery and gene therapy.
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Figure 2. 
Carbon-based nanohybrid surface modifications. A) Design strategy of a novel targeted 

SWNT–lipid–drug delivery system of PTX. The drug was chemically conjugated with a 

lipid tail through a reversible carbonate bond. The lipid tail is able to bind through 

hydrophobic interactions to the surface of the SWNT. Using a similar strategy, FA was 

linked with a phospholipidic tail Reproduced with permission.[24] 2013, Elsevier. B) 

Schematic of π–π interaction between graphene oxide and dextran modified with hematin 

(red). Reproduced with permission.[32] Copyright 2013 American Chemical Society. C) 

Possible chemical surface modifications of nanodiamonds to engineer polymeric 

nanohybrids as carriers for cisplatin. Reproduced with permission.[34] Copyright 2013, 

American Chemical Society.
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Figure 3. 
Laponite interaction with gelatin polymer network to form injectable hydrogels. A) 

Schematic representation of injectable nanocomposite hydrogel made of gelatin and laponite 

along with transmission electron microscopy (TEM) images indicating the size of the 

nanoclay. Scale bar: 50 nm B) Yield stress of gels as function of the nanoclay concentration 

loaded in the hydrogels along with rheological characterization alternating low and high 

shear stress. For all of the nanocomposite hydrogels, more than 95% recovery was observed. 

C) Release profile of VEGF and fibroblast growth factor-2 (FGF2) from gelatin methacrylate 

(GelMA) nanocomposite hydrogels containing different concentrations of laponite in the 

range of 0% up to 1.0% w/v. Adapted with permission.[42] Copyright 2016, The Royal 

Society of Chemistry.
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Figure 4. 
Example of chemical vector for gene delivery used to promote re-endothelialization in 

vascular stents. A) Formation of an electrostatic complex between cationic nanoparticles 

loaded with VEGF and Ang1 genes and CNT wrapped with PAA. The hybrid NP–CNT 

system is coated over the stent surface by LbL fabrication using fibrin matrix to promote re-

endothelialization. B) First row includes angiographic images of canine femoral arteries at 6 

weeks post stent deployment of three different groups namely BMS (bare metal stent), NCS 

(−) (NP coated stent with no gene) and NCS (+) (NP coated stent with Ang1 gene). In the 

second row cross sectional images of elastic Van Gieson stained stented femoral arteries at 6 

weeks post deployment. Scale bar: 0.5 and 100 mm (insert). Results on the bottom show 

significant reduction in the percentage of stenosis an neointimal area for the group 

containing genes NCS (+). The data represent the mean ± SD (n = 8); ***p < 0.001. p value 

on comparing NCS (+) and NCS (−) is denoted by ψ. Reproduced with permission.[78] 

Copyright 2012, Elsevier.
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Figure 5. 
Example of biological vector using baculovirus (Bac)-based stent therapy, as a strategy to 

promote vascular re-endothelialization. A) The first row includes images of the bare metal 

stent and the bioactive stent which contains Bac–PAMAM nanocomplexes before and after 

crimping of balloon catheter Scale bar: 1 mm. SEM, TEM, and fluorescent images to display 

the morphology of the microsphere (MS) of PLGA entrapping the Bac. Scale bar: 50 μm for 

fluorescent images. Scale bar: 50 μm (left) and 5 μm (right) for SEM pictures. Scale bar: 0.5 

μm for TEM images. In addition the AFM image demonstrates the surface topography of 

MSs, encapsulating the nanohybrid baculovirus components. B) Representative cross-

sectional images of elastic Van Gieson stained femoral arteries with uncoated bare metal 

stent and stents coated with BacNull–PAMAM and BacVegf–PAMAM at week 16 after stent 

deployment. Scale bar: 1 mm (left) and 100 μm (right). Results showed a decrease in the 

percentage of stenosis and neointimal area for the stents coated with BacVegf–PAMAM. The 

data represent the mean ± SD (n = 8). ANOVA: **p < 0.01; p value on comparing COATED 

(+) and Coated (–) is denoted by Paul et al.[103] Reproduced with permission.[103] Copyright 

2013, Nature Publishing Group.
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Figure 6. 
Example of hybrid chemical/biological vector for gene delivery to enhance stem cell activity 

in myocardial therapy. A) Schematic representation of the steps necessary to generate the 

recombinant baculovirus (Bac-Ang1) and prepare the hybridized baculovirus with TAT/DNA 

nanoparticles necessary to transduce hASC for myocardial therapy. B) Representative 

images of the left ventricle myocardial section stained with Mason’s trichrome showing a 

decrease in cardiac fibrosis after hASC and hASC–Ang1 transplantation. C) 

Echocardiographic assessment of cardiac function. Heart ejection fraction increased 

significantly after treatment with hASC and hASC–Ang1 groups after 28 d post-infarction. 

Data expressed as mean ± standard deviation. Statistically significant differences between 

groups compared to control no hASC are indicated as ***p < 0.001; **p < 0.01; *p < 0.05. 

Significant difference between hASC and hASC–Ang1 is indicated by †p < 0.001. 

Reproduced with permission.[105] Copyright 2012, DOVE Medical Press.
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