294 research outputs found

    The Myth of the Stupid Believer: The Negative Religiousness–IQ Nexus is Not on General Intelligence (g) and is Likely a Product of the Relations Between IQ and Autism Spectrum Traits

    Get PDF
    Numerous studies have found a negative relationship between religiousness and IQ. It is in the region of −0.2, according to meta-analyses. The reasons for this relationship are, however, unknown. It has been suggested that higher intelligence leads to greater attraction to science, or that it helps to override evolved cognitive dispositions such as for religiousness. Either way, such explanations assume that the religion–IQ nexus is on general intelligence (g), rather than some subset of specialized cognitive abilities. In other words, they assume it is a Jensen efect. Two large datasets comparing groups with diferent levels of religiousness show that their IQ diferences are not on g and must, therefore, be attributed to specialized abilities. An analysis of the specialized abilities on which the religious and non-religious groups difer reveals no clear pattern. We cautiously suggest that this may be explicable in terms of autism spectrum disorder traits among people with high IQ scores, because such traits are negatively associated with religiousness

    Stars and dark matter in the spiral gravitational lens 2237+0305

    Get PDF
    We construct a mass model for the spiral lens galaxy 2237+0305, at redshift z_l=0.04, based on gravitational-lensing constraints, HI rotation, and new stellar-kinematic information, based on data taken with the ESI spectrograph on the 10m Keck-II Telescope. High resolution rotation curves and velocity dispersion profiles along two perpendicular directions, close to the major and minor axes of the lens galaxy, were obtained by fitting the Mgb-Fe absorption line region. The stellar rotation curve rises slowly and flattens at r~1.5" (~1.1 kpc). The velocity dispersion profile is approximately flat. A combination of photometric, kinematic and lensing information is used to construct a mass model for the four major mass components of the system -- the dark matter halo, disc, bulge, and bar. The best-fitting solution has a dark matter halo with a logarithmic inner density slope of gamma=0.9+/-0.3 for rho_DM propto r^-gamma, a bulge with M/L_B=6.6+/-0.3 Upsilon_odot, and a disc with M/L_B =1.2+/-0.3 Upsilon_odot, in agreement with measurements of late-type spirals. The bulge dominates support in the inner regions where the multiple images are located and is therefore tightly constrained by the observations. The disc is sub-maximal and contributes 45+/-11 per cent of the rotational support of the galaxy at 2.2r_d. The halo mass is (2.0+/-0.6) x 10^12 M_odot, and the stellar to virial mass ratio is 7.0+/-2.3 per cent, consistent with typical galaxies of the same mass.Comment: 14 pages, 6 figures, MNRAS, in pres

    Disentangling Baryons and Dark Matter in the Spiral Gravitational Lens B1933+503

    Get PDF
    Measuring the relative mass contributions of luminous and dark matter in spiral galaxies is important for understanding their formation and evolution. The combination of a galaxy rotation curve and strong lensing is a powerful way to break the disk-halo degeneracy that is inherent in each of the methods individually. We present an analysis of the 10-image radio spiral lens B1933+503 at z_l=0.755, incorporating (1) new global VLBI observations, (2) new adaptive-optics assisted K-band imaging, (3) new spectroscopic observations for the lens galaxy rotation curve and the source redshift. We construct a three-dimensionally axisymmetric mass distribution with 3 components: an exponential profile for the disk, a point mass for the bulge, and an NFW profile for the halo. The mass model is simultaneously fitted to the kinematics and the lensing data. The NFW halo needs to be oblate with a flattening of a/c=0.33^{+0.07}_{-0.05} to be consistent with the radio data. This suggests that baryons are effective at making the halos oblate near the center. The lensing and kinematics analysis probe the inner ~10 kpc of the galaxy, and we obtain a lower limit on the halo scale radius of 16 kpc (95% CI). The dark matter mass fraction inside a sphere with a radius of 2.2 disk scale lengths is f_{DM,2.2}=0.43^{+0.10}_{-0.09}. The contribution of the disk to the total circular velocity at 2.2 disk scale lengths is 0.76^{+0.05}_{-0.06}, suggesting that the disk is marginally submaximal. The stellar mass of the disk from our modeling is log_{10}(M_{*}/M_{sun}) = 11.06^{+0.09}_{-0.11} assuming that the cold gas contributes ~20% to the total disk mass. In comparison to the stellar masses estimated from stellar population synthesis models, the stellar initial mass function of Chabrier is preferred to that of Salpeter by a probability factor of 7.2.Comment: 16 pages, 13 figures, minor revisions based on referee's comments, accepted for publication in Ap

    Mass Modeling of Disk Galaxies: Constraints, Degeneracies and Adiabatic Contraction

    Full text link
    This paper addresses available constraints on mass models fitted to rotation curves. Mass models of disk galaxies have well-known degeneracies, that prevent a unique mass decomposition. The most notable is due to the unknown value of the stellar mass-to-light ratio (the disk-halo degeneracy); even with this known, degeneracies between the halo parameters themselves may prevent an unambiguous determination of the shape of the dark halo profile, which includes the inner density slope of the dark matter halo. The latter is often referred to as the ``cusp-core degeneracy''. We explore constraints on the disk and halo parameters and apply these to four mock and six observed disk galaxies with high resolution and extended rotation curves. Our full set of constraints consists of mass-to-light (M/L) ratios from stellar population synthesis models based on B-R colors, constraints on halo parameters from N-body simulations, and constraining the halo virial velocity to be less than the maximum observed velocity. These constraints are only partially successful in lifting the cusp-core degeneracy. The effect of adiabatic contraction of the halo by the disk is to steepen cores into cusps and reduce the best-fit halo concentration and M/L values (often significantly). We also discuss the effect of disk thickness, halo flattening, distance errors, and rotation curve error values on mass modeling. Increasing the imposed minimum rotation curve error from typically low, underestimated values to more realistic estimates decreases the chi-square substantially and makes distinguishing between a cuspy or cored halo profile even more difficult. In spite of the degeneracies and uncertainties present, our constrained mass modeling favors sub-maximal disks (i.e., a dominant halo) at 2.2 disk scale lengths, with Vdisk/Vtot < 0.6.Comment: 26 pages, 11 figures, minor changes to agree with published version, uses emulateap

    Two-dimensional kinematics of SLACS lenses: III. Mass structure and dynamics of early-type lens galaxies beyond z ~ 0.1

    Get PDF
    We combine in a self-consistent way the constraints from both gravitational lensing and stellar kinematics to perform a detailed investigation of the internal mass distribution, amount of dark matter, and dynamical structure of the 16 early-type lens galaxies from the SLACS Survey, at z = 0.08 - 0.33, for which both HST/ACS and NICMOS high-resolution imaging and VLT VIMOS IFU spectroscopy are available. Based on this data set, we analyze the inner regions of the galaxies, i.e. typically within one (3D) effective radius r_e, under the assumption of axial symmetry and by constructing dynamical models supported by two-integral stellar DFs. For all systems, the total mass density distribution is found to be well approximated by a simple power-law: this profile is on average slightly super-isothermal, with a logarithmic slope = 2.074^{+0.043}_{-0.041} (68% CL) and an intrinsic scatter 0.144^{+0.055}_{-0.014}, and is fairly round, with an average axial ratio = 0.77+/-0.04. The lower limit for the dark matter fraction (fDM) inside r_e ranges, in individual systems, from nearly zero to almost a half, with a median value of 12%. By including stellar masses derived from SPS models with a Salpeter IMF, we obtain an average fDM = 31%. The fDM rises to 61% if, instead, a Chabrier IMF is assumed. For both IMFs, the dark matter fraction increases with the total mass of the galaxy (3-sigma correlation). Based on the intrinsic angular momentum parameter calculated from our models, we find that the galaxies can be divided into two dynamically distinct groups, which are shown to correspond to the usual classes of the slow and fast rotators. Overall, the SLACS systems are structurally and dynamically very similar to their nearby counterparts, indicating that the inner regions of early-type galaxies have undergone little, if any, evolution since redshift z ~ 0.35. (Abridged)Comment: 27 pages, 34 figures. MNRAS, in pres

    Constraints on the Assembly and Dynamics of Galaxies: I. Detailed Rest-frame Optical Morphologies on Kiloparsec-scale of z ~ 2 Star-forming Galaxies

    Get PDF
    We present deep and high-resolution HST/NIC2 F160W imaging at 1.6micron of six z~2 star-forming galaxies with existing near-IR integral field spectroscopy from SINFONI at the VLT. The unique combination of rest-frame optical imaging and nebular emission-line maps provides simultaneous insight into morphologies and dynamical properties. The overall rest-frame optical emission of the galaxies is characterized by shallow profiles in general (Sersic index n<1), with median effective radii of ~5kpc. The morphologies are significantly clumpy and irregular, which we quantify through a non-parametric morphological approach, estimating the Gini (G), Multiplicity (Psi), and M_20 coefficients. The strength of the rest-frame optical emission lines in the F160W bandpass indicates that the observed structure is not dominated by the morphology of line-emitting gas, and must reflect the underlying stellar mass distribution of the galaxies. The sizes and structural parameters in the rest-frame optical continuum and Halpha emission reveal no significant differences, suggesting similar global distributions of the on-going star formation and more evolved stellar population. While no strong correlations are observed between stellar population parameters and morphology within the NIC2/SINFONI sample itself, a consideration of the sample in the context of a broader range of z~2 galaxy types indicates that these galaxies probe the high specific star formation rate and low stellar mass surface density part of the massive z~2 galaxy population, with correspondingly large effective radii, low Sersic indices, low G, and high Psi and M_20. The combined NIC2 and SINFONI dataset yields insights of unprecedented detail into the nature of mass accretion at high redshift. [Abridged]Comment: 44 pages, 19 figures. Revised version accepted for publication in the Astrophysical Journa

    Line-of-sight velocity dispersions and a mass distribution model of the Sa galaxy NGC 4594

    Get PDF
    In the present paper we develop an algorithm allowing to calculate line-of-sight velocity dispersions in an axisymmetric galaxy outside of the galactic plane. When constructing a self-consistent model, we take into account the galactic surface brightness distribution, stellar rotation curve and velocity dispersions. This algorithm is applied to a Sa galaxy NGC 4594 = M 104, for which there exist velocity dispersion measurements outside of the galactic major axis. The mass distribution model is constructed in two stages. In the first stage we construct a luminosity distribution model, where only galactic surface brightness distribution is taken into account. Thereafter, in the second stage we develop on the basis of the Jeans equations a detailed mass distribution model and calculate line-of-sight velocity dispersions and the stellar rotation curve. Here a dark matter halo is added to visible components. Calculated dispersions are compared with observations along different slit positions perpendicular and parallel to the galactic major axis. In the best-fitting model velocity dispersion ellipsoids are radially elongated. Outside the galactic plane velocity dispersion behaviour is more sensitive to the dark matter density distribution and allows to estimate dark halo parameters.Comment: 12 pages, 13 figures, accepted for publication in MNRA

    The star formation history of mass-selected galaxies in the COSMOS field

    Get PDF
    We explore the evolution of the specific star formation rate (SSFR) for 3.6um-selected galaxies of different M_* in the COSMOS field. The average SFR for sub-sets of these galaxies is estimated with stacked 1.4GHz radio continuum emission. We separately consider the total sample and a subset of galaxies (SF) that shows evidence for substantive recent star formation in the rest-frame optical SED. At 0.2<z<3 both populations show a strong and M_*-independent decrease in their SSFR towards z=0.2, best described by a power- law (1+z)^n, where n~4.3 for all galaxies and n~3.5 for SF sources. The decrease appears to have started at z>2, at least above 4x10^10M_Sun where our conclusions are most robust. We find a tight correlation with power-law dependence, SSFR (M_*)^beta, between SSFR and M_* at all z. It tends to flatten below ~10^10M_Sun if quiescent galaxies are included; if they are excluded a shallow index beta_SFG -0.4 fits the correlation. On average, higher M_* objects always have lower SSFRs, also among SF galaxies. At z>1.5 there is tentative evidence for an upper SSFR-limit that an average galaxy cannot exceed. It is suggested by a flattening of the SSFR-M_* relation (also for SF sources), but affects massive (>10^10M_Sun) galaxies only at the highest z. Below z=1.5 there thus is no direct evidence that galaxies of higher M_* experience a more rapid waning of their SSFR than lower M_* SF systems. In this sense, the data rule out any strong 'downsizing'. We combine our results with recent measurements of the galaxy (stellar) mass function in order to determine the characteristic mass of a SF galaxy (M_*=10^(10.6\pm0.4)M_Sun). In this sense, too, there is no 'downsizing'. Our analysis constitutes the most extensive SFR density determination with a single technique to z=3. Recent Herschel results are consistent with our results, but rely on far smaller samples.Comment: 37 pages, 14 figures, 7 tables; accepted for publication in the Astrophysical Journal; High resolution versions of all figures available at www.mpia-hd.mpg.de/homes/karim/research.htm

    Childhood maltreatment and intimate partner violence in dissociative disorder patients

    Get PDF
    Background: Childhood maltreatment (CM) is a risk factor for subsequent intimate partner violence (IPV) in adulthood, with high rates of retrospectively reported CM among IPV victims and perpetrators. A theorized mechanism of the link between CM and IPV is dissociation. Dissociation may allow perpetrators of violence to remain emotionally distant from their behavior and minimize empathy toward those they victimize, enabling them to commit acts of violence similar to their own experiences. Indeed, elevated rates of dissociation and dissociative disorders (DD) have been found among IPV survivors and perpetrators. In addition, in pilot studies, DD clinicians have reported high levels of violent behavior among DD patients. Objective: The present study investigates IPV among DD patients with Dissociative Identity Disorder and Dissociative Disorder Not Otherwise Specified, a group with CM rates of 80–95% and severe dissociative symptoms. Methods: DD clinicians reported on rates of CM and IPV among 275 DD patients in outpatient treatment. DD patients also completed a self-report measure of dissociation. Analyses assessed the associations between CM typologies and IPV, as well as trait dissociation and IPV. Results: Physical and emotional child abuse were associated with physical IPV, and childhood witnessing of domestic violence (DV) and childhood neglect were associated with emotional IPV. Conclusions: The present study is the first to provide empirical support for a possible CM to adult IPV developmental trajectory among DD patients. Future research is needed to better understand the link between CM and IPV among those with trauma and DD

    The PN.S Elliptical Galaxy Survey: the dark matter in NGC 4494

    Get PDF
    We present new Planetary Nebula Spectrograph observations of the ordinary elliptical galaxy NGC 4494, resulting in positions and velocities of 255 PNe out to 7 effective radii (25 kpc). We also present new wide-field surface photometry from MMT/Megacam, and long-slit stellar kinematics from VLT/FORS2. The spatial and kinematical distributions of the PNe agree with the field stars in the region of overlap. The mean rotation is relatively low, with a possible kinematic axis twist outside 1 Re. The velocity dispersion profile declines with radius, though not very steeply, down to ~70 km/s at the last data point. We have constructed spherical dynamical models of the system, including Jeans analyses with multi-component LCDM-motivated galaxies as well as logarithmic potentials. These models include special attention to orbital anisotropy, which we constrain using fourth-order velocity moments. Given several different sets of modelling methods and assumptions, we find consistent results for the mass profile within the radial range constrained by the data. Some dark matter (DM) is required by the data; our best-fit solution has a radially anisotropic stellar halo, a plausible stellar mass-to-light ratio, and a DM halo with an unexpectedly low central density. We find that this result does not substantially change with a flattened axisymmetric model. Taken together with other results for galaxy halo masses, we find suggestions for a puzzling pattern wherein most intermediate-luminosity galaxies have very low concentration halos, while some high-mass ellipticals have very high concentrations. We discuss some possible implications of these results for DM and galaxy formation.Comment: 29 pages, 17 figures. MNRAS, accepte
    corecore