2,901 research outputs found

    Cold Dark Matter Halos Must Burn

    Full text link
    High-quality optical rotation curves for a sample of low-luminosity spirals evidence that the dark halos around galaxies are inconsistent with the output of proper CDM simulations. In fact, dark halos enveloping stellar disks are structures with approximately a constant density out to the optical edges. This is in strong disagreement with the characteristic rho(r) ~ r^(-1.5) CDM regime and severely challenges the "standard" CDM theory, also because the halo density appears to be heated up, at gross variance with the hierarchical evolution of collision-free particles.Comment: 2 figures, definitive version to appear in the Proceedings of the MPA/ESO/MPE/USM Joint Conference: "Lighthouses of the Universe: The Most Luminous Celestial Objects and their use for Cosmology", August 2001, Garching, German

    The Dark Matter Distribution in Disk Galaxies

    Get PDF
    We use high-quality optical rotation curves of 9 low-luminosity disk galaxies to obtain the velocity profile of the surrounding dark matter halos. We find that they increase linearly with radius at least out to the stellar disk edge, implying that, over the entire region where the stars reside, the density of the dark halo is constant. The properties of the halo mass structure found are similar to that claimed for a number of dwarf and low surface brightness galaxies, but provide a more substantial evidence of the discrepancy between the halo mass distribution predicted in standard cold dark matter scenario and those actually detected around galaxies. We find that the density profile proposed by Burkert (1995) reproduces the halo rotation curves, with halo central densities and core radii scaling as ρ0∝r0−2/3\rho_0 \propto r_0^{-2/3}.Comment: 8 pages, 6 figures, MNRAS accepted. New section and figures added, concerning CDM mass models. Minor changes to the rest of the pape

    Secondary radiation from the Pamela/ATIC excess and relevance for Fermi

    Full text link
    The excess of electrons/positrons observed by the Pamela and ATIC experiments gives rise to a noticeable amount of synchrotron and Inverse Compton Scattering (ICS) radiation when the e^+e^- interact with the Galactic Magnetic Field, and the InterStellar Radiation Field (ISRF). In particular, the ICS signal produced within the WIMP annihilation interpretation of the Pamela/ATIC excess shows already some tension with the EGRET data. On the other hand, 1 yr of Fermi data taking will be enough to rule out or confirm this scenario with a high confidence level. The ICS radiation produces a peculiar and clean "ICS Haze" feature, as well, which can be used to discriminate between the astrophysical and Dark Matter scenarios. This ICS signature is very prominent even several degrees away from the galactic center, and it is thus a very robust prediction with respect to the choice of the DM profile and the uncertainties in the ISRF.Comment: 5 pages, 3 figures; v2: improved figures, enlarged discussion on the gamma signal and data; to appear in ApJ

    Ultrahigh energy neutrinos with a mediterranean neutrino telescope

    Full text link
    A study of the ultra high energy neutrino detection performances of a km^3 Neutrino Telescope sitting at the three proposed sites for "ANTARES", "NEMO" and "NESTOR" in the Mediterranean sea is here performed. The detected charged leptons energy spectra, entangled with their arrival directions, provide an unique tool to both determine the neutrino flux and the neutrino-nucleon cross section.Comment: 10 pages, 10 figures, Proceedings of XII International Workshop on Neutrino Telescopes, Venezia 200

    Traps

    Get PDF
    In lieu of an abstract, below is the essay\u27s first paragraph. The traps had been good to her that day. Five muskrat, three a good size, and the two smaller ones would still get a decent price. The pelts were thick and full because the winter had been cold. Joey was proud that she could judge a good pelt and she usually came. pretty close on guessing the price the dealers would settle for

    Active Debris Removal Mapping Project

    Get PDF
    Space debris discussions initiated with the start of the space age 55 years ago and have seen special interest in current years. This is due to the large increase in the number of space debris which has led to an increased threat of collision with operational space systems and of unsafe reentry. Due to this increased interest in this area, many different methods have been proposed in recent years for mitigation and space debris removal, some of which have even secured funding from space agencies for further development. These include ground based lasers and space based systems which use electro-dynamic tethers, solar sails or inflatable components. While each method has its own pros and cons, some of these concepts seem to be more suitable for the short term and others for the long term. This paper identifies major performance measures for space debris removal systems based on current rules and regulations and maps the performance of the ADR technologies based on these criteria. The map can help prioritize removal concepts and required technologies in order to better meet current needs

    Radio constraints on dark matter annihilation in the galactic halo and its substructures

    Get PDF
    Annihilation of Dark Matter usually produces together with gamma rays comparable amounts of electrons and positrons. The e+e- gyrating in the galactic magnetic field then produce secondary synchrotron radiation which thus provides an indirect mean to constrain the DM signal itself. To this purpose, we calculate the radio emission from the galactic halo as well as from its expected substructures and we then compare it with the measured diffuse radio background. We employ a multi-frequency approach using data in the relevant frequency range 100 MHz-100 GHz, as well as the WMAP Haze data at 23 GHz. The derived constraints are of the order =10^{-24} cm3 s^{-1} for a DM mass m_chi=100 GeV sensibly depending however on the astrophysical uncertainties, in particular on the assumption on the galactic magnetic field model. The signal from single bright clumps is instead largely attenuated by diffusion effects and offers only poor detection perspectives.Comment: 12 pages, 7 figures; v2: some references added, some discussions enlarged; matches journal versio

    Neighbors

    Get PDF
    In lieu of an abstract, below is the essay\u27s first paragraph. Sarah and Pa had been up there just a week before. It was a run-down old house that hadn\u27t been lived in since Mrs. Blackert died eleven years before. The wild blackberries grew clear up to the front door, but around to the back of the house the daffodils had gone wild and covered the whole yard including the path that led to the outhouse. Sarah thought they looked like melted, fresh-churned butter and told Pa so, but he pulled her braids and said no, the field looked like it was filled with tiny, bobbing, blonde-haired girls

    Stringent constraint on neutrino Lorentz-invariance violation from the two IceCube PeV neutrinos

    Full text link
    It has been speculated that Lorentz-invariance violation (LIV) might be generated by quantum-gravity (QG) effects. As a consequence, particles may not travel at the universal speed of light. In particular, superluminal extragalactic neutrinos would rapidly lose energy via the bremssthralung of electron-positron pairs (nu -> nu e+ e-), damping their initial energy into electromagnetic cascades, a figure constrained by Fermi-LAT data. We show that the two cascade neutrino events with energies around 1 PeV recently detected by IceCube -if attributed to extragalactic diffuse events, as it appears likely- can place the strongest bound on LIV in the neutrino sector, namely delta =(v^2-1) ~ 10^(-4) M_Pl) for a linear (quadratic) LIV, at least for models inducing superluminal neutrino effects (delta > 0).Comment: 4 page
    • 

    corecore