33 research outputs found

    Mechanical and thermal properties of biodegradable hydroxyapatite/poly(sorbitol sebacate malate) composites

    Get PDF
    In this project, novel hydroxyapatite (HAp)/poly(sorbitol sebacate malate) (PSSM) composites for potential application in soft tissue engineering were developed. The composites consist of the biodegradable polyester prepared from sorbitol, sebacic acid, malic acid and various amount of HAp (5, 10, and 15 wt%). Effects of different weight percents of HAp on the properties of the composites were studied. Fourier transform infrared spectroscopy was performed to analyze chemical interactions between HAp/PSSM. Tensile tests and differential scanning calorimetry were conducted to evaluate the mechanical and thermal properties of HAp/PSSM composites. Tensile testing on HAp/PSSM composites showed that their mechanical properties improved with increasing concentration of HAp. The Young's modulus and tensile strength of the composites ranged from 16.20±1.73 to 23.96±2.56 MPa and 626.96±81.04 to 1,026.46±105.12 MPa, respectively. The glass transition temperature of all samples was slightly higher than room temperatur

    ENSO Atmospheric Teleconnections and Their Response to Greenhouse Gas Forcing

    Get PDF
    This is the final version of the article. Available from AGU via the DOI in this record.El Niño and Southern Oscillation (ENSO) is the most prominent year-to-year climate fluctuation on Earth, alternating between anomalously warm (El Niño) and cold (La Niña) sea surface temperature (SST) conditions in the tropical Pacific. ENSO exerts its impacts on remote regions of the globe through atmospheric teleconnections, affecting extreme weather events worldwide. However, these teleconnections are inherently nonlinear and sensitive to ENSO SST anomaly patterns and amplitudes. In addition, teleconnections are modulated by variability in the oceanic and atmopsheric mean state outside the tropics and by land and sea ice extent. The character of ENSO as well as the ocean mean state have changed since the 1990s, which might be due to either natural variability or anthropogenic forcing, or their combined influences. This has resulted in changes in ENSO atmospheric teleconnections in terms of precipitation and temperature in various parts of the globe. In addition, changes in ENSO teleconnection patterns have affected their predictability and the statistics of extreme events. However, the short observational record does not allow us to clearly distinguish which changes are robust and which are not. Climate models suggest that ENSO teleconnections will change because the mean atmospheric circulation will change due to anthropogenic forcing in the 21st century, which is independent of whether ENSO properties change or not. However, future ENSO teleconnection changes do not currently show strong intermodel agreement from region to region, highlighting the importance of identifying factors that affect uncertainty in future model projections.S. W. Y. is supported by the KoreaMeteorological Administration Researchand Development Program under grant KMIPA2015-2112. Wenju Cai is supported by Earth System and Climate Change Hub of the Australia National Environmental Science Programme, and Centre for Southern Hemisphere Oceans Research, an international collaboration between CSIRO and Qingdao National Laboratory for Marine Sciences and Technology. B. Dewitte acknowledges supports from FONDECYT(1151185) and from LEFE-GMMC. Dietmar Dommenget is supported by ARC Centre of Excellence for Climate System Science (CE110001028)

    Observation of long-range, near-side angular correlations in proton-proton collisions at the LHC

    Get PDF
    This is the pre-print version of the Published Article, which can be accessed from the link below - Copyright @ 2010 Springer VerlagResults on two-particle angular correlations for charged particles emitted in proton-proton collisions at center-of-mass energies of 0.9, 2.36, and 7 TeV are presented, using data collected with the CMS detector over a broad range of pseudorapidity (eta) and azimuthal angle (phi). Short-range correlations in Delta(eta), which are studied in minimum bias events, are characterized using a simple "independent cluster" parametrization in order to quantify their strength (cluster size) and their extent in eta (cluster decay width). Long-range azimuthal correlations are studied differentially as a function of charged particle multiplicity and particle transverse momentum using a 980 inverse nb data set at 7 TeV. In high multiplicity events, a pronounced structure emerges in the two-dimensional correlation function for particle pairs with intermediate transverse momentum of 1-3 GeV/c, 2.0< |Delta(eta)| <4.8 and Delta(phi) near 0. This is the first observation of such a long-range, near-side feature in two-particle correlation functions in pp or p p-bar collisions

    Observation of long-range, near-side angular correlations in proton-proton collisions at the LHC

    Get PDF
    Results on two-particle angular correlations for charged particles emitted in proton-proton collisions at center-of-mass energies of 0.9, 2.36, and 7TeV are presented, using data collected with the CMS detector over a broad range of pseudorapidity (eta) and azimuthal angle (phi). Short-range correlations in Delta(eta), which are studied in minimum bias events, are characterized using a simple "independent cluster" parametrization in order to quantify their strength (cluster size) and their extent in eta (cluster decay width). Long-range azimuthal correlations are studied differentially as a function of charged particle multiplicity and particle transverse momentum using a 980 nb(-1) data set at 7TeV. In high multiplicity events, a pronounced structure emerges in the two-dimensional correlation function for particle pairs with intermediate p(T) of 1-3 GeV/c, 2.

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF
    corecore