56 research outputs found

    Functional Integrative Levels in the Human Interactome Recapitulate Organ Organization

    Get PDF
    Interactome networks represent sets of possible physical interactions between proteins. They lack spatio-temporal information by construction. However, the specialized functions of the differentiated cell types which are assembled into tissues or organs depend on the combinatorial arrangements of proteins and their physical interactions. Is tissue-specificity, therefore, encoded within the interactome? In order to address this question, we combined protein-protein interactions, expression data, functional annotations and interactome topology. We first identified a subnetwork formed exclusively of proteins whose interactions were observed in all tested tissues. These are mainly involved in housekeeping functions and are located at the topological center of the interactome. This ‘Largest Common Interactome Network’ represents a ‘functional interactome core’. Interestingly, two types of tissue-specific interactions are distinguished when considering function and network topology: tissue-specific interactions involved in regulatory and developmental functions are central whereas tissue-specific interactions involved in organ physiological functions are peripheral. Overall, the functional organization of the human interactome reflects several integrative levels of functions with housekeeping and regulatory tissue-specific functions at the center and physiological tissue-specific functions at the periphery. This gradient of functions recapitulates the organization of organs, from cells to organs. Given that several gradients have already been identified across interactomes, we propose that gradients may represent a general principle of protein-protein interaction network organization

    Anais do 1º Encontro de Iniciação Científica e de Extensão da Unila: "Conhecer e Transformar"

    Get PDF
    Anais do I Encontro de Iniciação Científica e de Extensão da Unila. Unila-Centro, Foz do Iguaçu, Estado do Paraná, 04 e 05 de junho de 2012A indissocialibidade entre as ações de ensino, pesquisa e extensão, cuja unidade caracteriza o processo pedagógico no ensino superior tem, neste evento, a manifestação da sua aplicabilidade. Os planos de trabalho e projetos de estudantes e orientadores de iniciação científica e extensão demarcam os processos formadores da capacidade de pensamento crítico dos futuros profissionais egressos de uma universidade inovadora. Neste processo, a iniciação científica tem a missão de aperfeiçoar a formação acadêmica e profissional de estudantes de graduação, que são introduzidos nos diferentes campos do Saber pelas disciplinas e projetos de pesquisa docente para serem capacitados a refletir sobre limitações das sociedades, formular e testar hipóteses, resolver problemas e situações colocadas tanto pela simples curiosidade humana de conhecer quanto pela necessidade social de transformar. Constitui-se na formulação de questionamentos, na aprendizagem da elaboração do objeto de pesquisa, escolha dos referenciais epistemológicos e metodológicos, busca de informações, sistematização da argumentação e produção de conhecimento. A extensão é, por natureza, de vocação transformadora da realidade social, cultural e ambiental. Demanda uma ação de pesquisa, que pode ser chamada de pesquisa-ação ou de observação. Envolve a todos, comunidade universitária e comunidade onde está inserida a Universidade, num processo de troca de saberes. Os saberes e conhecimentos adquiridos, bem como as tecnologias produzidas, fomentam resultados coletivos sempre e quando são transferidos sob os princípios da responsabilidade, cooperação, solidariedade, racionalidade e da inclusão. Espera-se que cada estudante desenvolva atitudes críticas e habilidades de pesquisador, tais como dedicação, criatividade, honestidade, ética e compromisso com a transformação da realidade. O I Encontro de Iniciação Científica e de Extensão da Unila colabora para a avaliação e a exposição pública dos resultados dos projetos. Será realizada uma conferência de abertura composta pelo Magnífico Reitor Pro tempore da Unila, Hélgio Trindade, pelo Pró-Reitor de Pesquisa e Pós-graduação, Andrea Ciacchi, pela Pró-Reitora de Extensão, Luisa Maria de Moura e Silva e pelo pesquisador Flávio Bortolozzi, para expor ao público o tema “Pesquisa no Meio Acadêmico e suas Oportunidades”. O evento contará ainda com a palestra da pesquisadora Laura Tavares Ribeiro Soares com o título “A Pesquisa na Extensão”.Universidade Federal da Integração Latino-Americana (UNILA

    Multiorgan Metastasis of Human HER-2+ Breast Cancer in Rag2−/−;Il2rg−/− Mice and Treatment with PI3K Inhibitor

    Get PDF
    In vivo studies of the metastatic process are severely hampered by the fact that most human tumor cell lines derived from highly metastatic tumors fail to consistently metastasize in immunodeficient mice like nude mice. We describe a model system based on a highly immunodeficient double knockout mouse, Rag2−/−;Il2rg−/−, which lacks T, B and NK cell activity. In this model human metastatic HER-2+ breast cancer cells displayed their full multiorgan metastatic potential, without the need for selections or additional manipulations of the system. Human HER-2+ breast cancer cell lines MDA-MB-453 and BT-474 injected into Rag2−/−;Il2rg−/− mice faithfully reproduced human cancer dissemination, with multiple metastatic sites that included lungs, bones, brain, liver, ovaries, and others. Multiorgan metastatic spread was obtained both from local tumors, growing orthotopically or subcutaneously, and from cells injected intravenously. The problem of brain recurrencies is acutely felt in HER-2+ breast cancer, because monoclonal antibodies against HER-2 penetrate poorly the blood-brain barrier. We studied whether a novel oral small molecule inhibitor of downstream PI3K, selected for its penetration of the blood-brain barrier, could affect multiorgan metastatic spread in Rag2−/−; Il2rg−/− mice. NVP-BKM120 effectively controlled metastatic growth in multiple organs, and resulted in a significant proportion of mice free from brain and bone metastases. Human HER-2+ human breast cancer cells in Rag2−/−;Il2rg−/− mice faithfully reproduced the multiorgan metastatic pattern observed in patients, thus allowing the investigation of metastatic mechanisms and the preclinical study of novel antimetastatic agents

    Oxr1 Is Essential for Protection against Oxidative Stress-Induced Neurodegeneration

    Get PDF
    Oxidative stress is a common etiological feature of neurological disorders, although the pathways that govern defence against reactive oxygen species (ROS) in neurodegeneration remain unclear. We have identified the role of oxidation resistance 1 (Oxr1) as a vital protein that controls the sensitivity of neuronal cells to oxidative stress; mice lacking Oxr1 display cerebellar neurodegeneration, and neurons are less susceptible to exogenous stress when the gene is over-expressed. A conserved short isoform of Oxr1 is also sufficient to confer this neuroprotective property both in vitro and in vivo. In addition, biochemical assays indicate that Oxr1 itself is susceptible to cysteine-mediated oxidation. Finally we show up-regulation of Oxr1 in both human and pre-symptomatic mouse models of amyotrophic lateral sclerosis, indicating that Oxr1 is potentially a novel neuroprotective factor in neurodegenerative disease

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    Multiancestry analysis of the HLA locus in Alzheimer’s and Parkinson’s diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes

    Get PDF
    Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson’s disease (PD) and Alzheimer’s disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF
    corecore