56 research outputs found

    Star Formation and Dynamics in the Galactic Centre

    Full text link
    The centre of our Galaxy is one of the most studied and yet enigmatic places in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre (GC) is the ideal environment to study the extreme processes that take place in the vicinity of a supermassive black hole (SMBH). Despite the hostile environment, several tens of early-type stars populate the central parsec of our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The formation of such early-type stars has been a puzzle for a long time: molecular clouds should be tidally disrupted by the SMBH before they can fragment into stars. We review the main scenarios proposed to explain the formation and the dynamical evolution of the early-type stars in the GC. In particular, we discuss the most popular in situ scenarios (accretion disc fragmentation and molecular cloud disruption) and migration scenarios (star cluster inspiral and Hills mechanism). We focus on the most pressing challenges that must be faced to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A., 'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201

    2020 ESC Guidelines on acute coronary syndrome without ST-segment elevation: recommendations and critical appraisal from the Dutch ACS and Interventional Cardiology working groups

    Get PDF
    Recently, the European Society of Cardiology (ESC) has updated its guidelines for the management of patients with acute coronary syndrome (ACS) without ST-segment elevation. The current consensus document of the Dutch ACS working group and the Working Group of Interventional Cardiology of the Netherlands Society of Cardiology aims to put the 2020 ESC Guidelines into the Dutch perspective and to provide practical recommendations for Dutch cardiologists, focusing on antiplatelet therapy, risk assessment and criteria for invasive strategy.Cardiolog

    Dense Stellar Populations: Initial Conditions

    Full text link
    This chapter is based on four lectures given at the Cambridge N-body school "Cambody". The material covered includes the IMF, the 6D structure of dense clusters, residual gas expulsion and the initial binary population. It is aimed at those needing to initialise stellar populations for a variety of purposes (N-body experiments, stellar population synthesis).Comment: 85 pages. To appear in The Cambridge N-body Lectures, Sverre Aarseth, Christopher Tout, Rosemary Mardling (eds), Lecture Notes in Physics Series, Springer Verla

    The Physics of Star Cluster Formation and Evolution

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00689-4.Star clusters form in dense, hierarchically collapsing gas clouds. Bulk kinetic energy is transformed to turbulence with stars forming from cores fed by filaments. In the most compact regions, stellar feedback is least effective in removing the gas and stars may form very efficiently. These are also the regions where, in high-mass clusters, ejecta from some kind of high-mass stars are effectively captured during the formation phase of some of the low mass stars and effectively channeled into the latter to form multiple populations. Star formation epochs in star clusters are generally set by gas flows that determine the abundance of gas in the cluster. We argue that there is likely only one star formation epoch after which clusters remain essentially clear of gas by cluster winds. Collisional dynamics is important in this phase leading to core collapse, expansion and eventual dispersion of every cluster. We review recent developments in the field with a focus on theoretical work.Peer reviewe

    Star Formation in Molecular Clouds

    Full text link
    Star formation is one of the least understood processes in cosmic evolution. It is difficult to formulate a general theory for star formation in part because of the wide range of physical processes involved. The interstellar gas out of which stars form is a supersonically turbulent plasma governed by magnetohydrodynamics. This is hard enough by itself, since we do not understand even subsonic hydrodynamic turbulence very well, let alone supersonic non-ideal MHD turbulence. However, the behavior of star-forming clouds in the ISM is also obviously influenced by gravity, which adds complexity, and by both continuum and line radiative processes. Finally, the behavior of star-forming clouds is influenced by a wide variety of chemical processes, including formation and destruction of molecules and dust grains (which changes the thermodynamic behavior of the gas) and changes in ionization state (which alter how strongly the gas couples to magnetic fields). As a result of these complexities, there is nothing like a generally agreed-upon theory of star formation, as there is for stellar structure. Instead, we are forced to take a much more phenomenological approach. These notes provide an introduction to our current thinking about how star formation works.Comment: To appear in the XVth Special Courses of the National Observatory of Rio de Janeiro, 49 pages, 11 figures, AIP conference format. This is a pedagogic introduction to star formation science, intended for beginning grad students or advanced undergraduate

    Genetic Sharing with Cardiovascular Disease Risk Factors and Diabetes Reveals Novel Bone Mineral Density Loci.

    Get PDF
    Bone Mineral Density (BMD) is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR) method to identify single nucleotide polymorphisms (SNPs) associated with BMD by leveraging cardiovascular disease (CVD) associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD) at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity

    LADUMA: looking at the distant universe with the MeerKAT array

    Get PDF
    The cosmic evolution of galaxies’ neutral atomic gas content is a major science driver for the Square Kilometre Array (SKA), as well as for its South African (MeerKAT) and Australian (ASKAP) precursors. Among the H I large survey programs (LSPs) planned for ASKAP and MeerKAT, the deepest and narrowest tier of the “wedding cake” will be defined by the combined L-band+UHF-band Looking At the Distant Universe with the MeerKAT Array (LADUMA) survey, which will probe H I in emission within a single “cosmic vuvuzela” that extends to z = 1.4, when the universe was only a third of its present age. Through a combination of individual and stacked detections (the latter relying on extensive multi-wavelength studies of the survey’s target field), LADUMA will study the redshift evolution of the baryonic Tully–Fisher relation and the cosmic H I density, the variation of the H I mass function with redshift and environment, and the connection between H I content and galaxies’ stellar properties (mass, age, etc.). The survey will also build a sample of OH megamaser detections that can be used to trace the cosmic merger history. This proceedings contribution provides a brief introduction to the survey, its scientific aims, and its technical implementation, deferring a more complete discussion for a future article after the implications of a recent review of MeerKAT LSP project plans are fully worked out

    Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma

    Get PDF
    Genome-wide association studies (GWAS) have transformed our understanding of susceptibility to multiple myeloma (MM), but much of the heritability remains unexplained. We report a new GWAS, a meta-analysis with previous GWAS and a replication series, totalling 9974 MM cases and 247,556 controls of European ancestry. Collectively, these data provide evidence for six new MM risk loci, bringing the total number to 23. Integration of information from gene expression, epigenetic profiling and in situ Hi-C data for the 23 risk loci implicate disruption of developmental transcriptional regulators as a basis of MM susceptibility, compatible with altered B-cell differentiation as a key mechanism. Dysregulation of autophagy/apoptosis and cell cycle signalling feature as recurrently perturbed pathways. Our findings provide further insight

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    Paroxysmal Cerebral Disorder
    corecore