93 research outputs found

    Radiolabeled Protein Composition and Method for Radiation Synovectomy

    Get PDF
    A radiolabeled protein composition adapted for radiation therapy which comprises a radioisotope and a protein material containing about 6 or more percent amino acids which have a sulfhydryl-containing side chain. A method for carrying out radiation synovectomy of arthritic joints. Rhenium radiolabeled protein micro- spheres are administered which contain cysteine and other amino acids. A method for radiolabeling a protein composition whereby the composition is treated with a reducing agent capable of reducing disulfides to sulfhydryls prior to radiolabeling

    Pb-214/Bi-214-TCMC-Trastuzumab inhibited growth of ovarian cancer in preclinical mouse models

    Get PDF
    Introduction: Better treatments for ovarian cancer are needed to eliminate residual peritoneal disease after initial debulking surgery. The present study evaluated Trastuzumab to deliver Pb-214/Bi-214 for targeted alpha therapy (TAT) for HER2-positive ovarian cancer in mouse models of residual disease. This study is the first report of TAT using a novel Radon-222 generator to produce short-lived Lead-214 (Pb-214, t1/2 = 26.8 min) in equilibrium with its daughter Bismuth-214 (Bi-214, t1/2 = 19.7 min); referred to as Pb-214/Bi-214. In this study, Pb-214/Bi-214-TCMC-Trastuzumab was tested.Methods: Trastuzumab and control IgG antibody were conjugated with TCMC chelator and radiolabeled with Pb-214/Bi-214 to yield Pb-214/Bi-214-TCMC-Trastuzumab and Pb-214/Bi-214-TCMC-IgG1. The decay of Pb-214/Bi-214 yielded α-particles for TAT. SKOV3 and OVAR3 human ovarian cancer cell lines were tested for HER2 levels. The effects of Pb-214/Bi-214-TCMC-Trastuzumab and appropriate controls were compared using clonogenic assays and in mice bearing peritoneal SKOV3 or OVCAR3 tumors. Mice control groups included untreated, Pb-214/Bi-214-TCMC-IgG1, and Trastuzumab only.Results and discussion: SKOV3 cells had 590,000 ± 5,500 HER2 receptors/cell compared with OVCAR3 cells at 7,900 ± 770. In vitro clonogenic assays with SKOV3 cells showed significantly reduced colony formation after Pb-214/Bi-214-TCMC-Trastuzumab treatment compared with controls. Nude mice bearing luciferase-positive SKOV3 or OVCAR3 tumors were treated with Pb-214/Bi-214-TCMC-Trastuzumab or appropriate controls. Two 0.74 MBq doses of Pb-214/Bi-214-TCMC-Trastuzumab significantly suppressed the growth of SKOV3 tumors for 60 days, without toxicity, compared with three control groups (untreated, Pb-214/Bi-214-TCMC-IgG1, or Trastuzumab only). Mice-bearing OVCAR3 tumors had effective therapy without toxicity with two 0.74 MBq doses of Pb-214/Bi-214-TCMC-trastuzumab or Pb-214/Bi-214-TCMC-IgG1. Together, these data indicated that Pb-214/Bi-214 from a Rn-222 generator system was successfully applied for TAT. Pb-214/Bi-214-TCMC-Trastuzumab was effective to treat mouse xenograft models. Advantages of Pb-214/Bi-214 from the novel generator systems include high purity, short half-life for fractioned therapy, and hourly availability from the Rn-222 generator system. This platform technology can be applied for a variety of cancer treatment strategies

    Intra-Arterial Delivery of Radiopharmaceuticals in Oncology: Current Trends and the Future of Alpha-Particle Therapeutics

    Get PDF
    A paradigm shift is underway in cancer diagnosis and therapy using radioactivity-based agents called radiopharmaceuticals. In the new strategy, diagnostic imaging measures the tumor uptake of radioactive agent X in a patient\u27s specific cancer, and if uptake metrics are realized, the patient can be selected for therapy with radioactive agent Y . The X and Y represent different radioisotopes that are optimized for each application. X-Y pairs are known as radiotheranostics, with the currently approved route of therapy being intravenous administration. The field is now evaluating the potential of intra-arterial dosing of radiotheranostics. In this manner, a higher initial concentration can be achieved at the cancer site, which could potentially enhance tumor-to-background targeting and lead to improved imaging and therapy. Numerous clinical trials are underway to evaluate these new therapeutic approaches that can be performed via interventional radiology. Of further interest is changing the therapeutic radioisotope that provides radiation therapy by ÎČ- emission to radioisotopes that also decay by α-particle emissions. Alpha (α)-particle emissions provide high energy transfer to the tumors and have distinct advantages. This review discusses the current landscape of intra-arterially delivered radiopharmaceuticals and the future of α-particle therapy with short-lived radioisotopes

    Orthotopic Xenografting of Human Luciferase-Tagged Malignant Peripheral Nerve Sheath Tumor Cells for in vivo Testing of Candidate Therapeutic Agents

    Get PDF
    Although in vitro screens are essential for the initial identification of candidate therapeutic agents, a rigorous assessment of the drug's ability to inhibit tumor growth must be performed in a suitable animal model. The type of animal model that is best for this purpose is a topic of intense discussion. Some evidence indicates that preclinical trials examining drug effects on tumors arising in transgenic mice are more predictive of clinical outcome1and so candidate therapeutic agents are often tested in these models. Unfortunately, transgenic models are not available for many tumor types. Further, transgenic models often have other limitations such as concerns as to how well the mouse tumor models its human counterpart, incomplete penetrance of the tumor phenotype and an inability to predict when tumors will develop

    In Vivo Fluorescence Immunohistochemistry:Localization of Fluorescently Labeled Cetuximab in Squamous Cell Carcinomas

    Get PDF
    Anti-EGFR (epidermal growth factor receptor) antibody based treatment strategies have been successfully implemented in head and neck squamous cell carcinoma (HNSCC). Unfortunately, predicting an accurate and reliable therapeutic response remains a challenge on a per-patient basis. Although significant efforts have been invested in understanding EGFR-mediated changes in cell signaling related to treatment efficacy, the delivery and histological localization in (peri-) tumoral compartments of antibody-based therapeutics in human tumors is poorly understood nor ever made visible. In this first in-human study of a systemically administered near-infrared (NIR) fluorescently labeled therapeutic antibody, cetuximab-IRDye800CW (2.5 mg/m(2), 25 mg/m(2), and 62.5 mg/m(2)), we show that by optical molecular imaging (i.e. denominated as In vivo Fluorescence Immunohistochemistry) we were able to evaluate localization of fluorescently labeled cetuximab. Clearly, optical molecular imaging with fluorescently labeled antibodies correlating morphological (peri-) tumoral characteristics to levels of antibody delivery, may improve treatment paradigms based on understanding true tumoral antibody delivery

    Prevention of diabetic nephropathy in Ins2+/−AkitaJ mice by the mitochondria-targeted therapy MitoQ

    Get PDF
    Mitochondrial production of ROS (reactive oxygen species) is thought to be associated with the cellular damage resulting from chronic exposure to high glucose in long-term diabetic patients. We hypothesized that a mitochondria-targeted antioxidant would prevent kidney damage in the Ins2+/−AkitaJ mouse model (Akita mice) of Type 1 diabetes. To test this we orally administered a mitochondria-targeted ubiquinone (MitoQ) over a 12-week period and assessed tubular and glomerular function. Fibrosis and pro-fibrotic signalling pathways were determined by immunohistochemical analysis, and mitochondria were isolated from the kidney for functional assessment. MitoQ treatment improved tubular and glomerular function in the Ins2+/−AkitaJ mice. MitoQ did not have a significant effect on plasma creatinine levels, but decreased urinary albumin levels to the same level as non-diabetic controls. Consistent with previous studies, renal mitochondrial function showed no significant change between any of the diabetic or wild-type groups. Importantly, interstitial fibrosis and glomerular damage were significantly reduced in the treated animals. The pro-fibrotic transcription factors phospho-Smad2/3 and ÎČ-catenin showed a nuclear accumulation in the Ins2+/−AkitaJ mice, which was prevented by MitoQ treatment. These results support the hypothesis that mitochondrially targeted therapies may be beneficial in the treatment of diabetic nephropathy. They also highlight a relatively unexplored aspect of mitochondrial ROS signalling in the control of fibrosis

    Radio Continuum Surveys with Square Kilometre Array Pathfinders

    Get PDF
    In the lead-up to the Square Kilometre Array (SKA) project, several next-generation radio telescopes and upgrades are already being built around the world. These include APERTIF (The Netherlands), ASKAP (Australia), e-MERLIN (UK), VLA (USA), e-EVN (based in Europe), LOFAR (The Netherlands), MeerKAT (South Africa), and the Murchison Widefield Array. Each of these new instruments has different strengths, and coordination of surveys between them can help maximise the science from each of them. A radio continuum survey is being planned on each of them with the primary science objective of understanding the formation and evolution of galaxies over cosmic time, and the cosmological parameters and large-scale structures which drive it. In pursuit of this objective, the different teams are developing a variety of new techniques, and refining existing ones. To achieve these exciting scientific goals, many technical challenges must be addressed by the survey instruments. Given the limited resources of the global radio-astronomical community, it is essential that we pool our skills and knowledge. We do not have sufficient resources to enjoy the luxury of re-inventing wheels. We face significant challenges in calibration, imaging, source extraction and measurement, classification and cross-identification, redshift determination, stacking, and data-intensive research. As these instruments extend the observational parameters, we will face further unexpected challenges in calibration, imaging, and interpretation. If we are to realise the full scientific potential of these expensive instruments, it is essential that we devote enough resources and careful study to understanding the instrumental effects and how they will affect the data. We have established an SKA Radio Continuum Survey working group, whose prime role is to maximise science from these instruments by ensuring we share resources and expertise across the projects. Here we describe these projects, their science goals, and the technical challenges which are being addressed to maximise the science return

    The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) began observations in July 2014. It pursues three core programs: APOGEE-2,MaNGA, and eBOSS. In addition, eBOSS contains two major subprograms: TDSS and SPIDERS. This paper describes the first data release from SDSS-IV, Data Release 13 (DR13), which contains new data, reanalysis of existing data sets and, like all SDSS data releases, is inclusive of previously released data. DR13 makes publicly available 1390 spatially resolved integral field unit observations of nearby galaxies from MaNGA,the first data released from this survey. It includes new observations from eBOSS, completing SEQUELS. In addition to targeting galaxies and quasars, SEQUELS also targeted variability-selected objects from TDSS and X-ray selected objects from SPIDERS. DR13 includes new reductions ofthe SDSS-III BOSS data, improving the spectrophotometric calibration and redshift classification. DR13 releases new reductions of the APOGEE-1data from SDSS-III, with abundances of elements not previously included and improved stellar parameters for dwarf stars and cooler stars. For the SDSS imaging data, DR13 provides new, more robust and precise photometric calibrations. Several value-added catalogs are being released in tandem with DR13, in particular target catalogs relevant for eBOSS, TDSS, and SPIDERS, and an updated red-clump catalog for APOGEE.This paper describes the location and format of the data now publicly available, as well as providing references to the important technical papers that describe the targeting, observing, and data reduction. The SDSS website, http://www.sdss.org, provides links to the data, tutorials and examples of data access, and extensive documentation of the reduction and analysis procedures. DR13 is the first of a scheduled set that will contain new data and analyses from the planned ~6-year operations of SDSS-IV.PostprintPeer reviewe

    Comparisons of 3D printed materials for biomedical imaging applications

    No full text
    ABSTRACTIn biomedical imaging, it is desirable that custom-made accessories for restraint, anesthesia, and monitoring can be easily cleaned and not interfere with the imaging quality or analyses. With the rise of 3D printing as a form of rapid prototyping or manufacturing for imaging tools and accessories, it is important to understand which printable materials are durable and not likely to interfere with imaging applications. Here, 15 3D printable materials were evaluated for radiodensity, optical properties, simulated wear, and capacity for repeated cleaning and disinfection. Materials that were durable, easily cleaned, and not expected to interfere with CT, PET, or optical imaging applications were identified
    • 

    corecore