501 research outputs found

    A magnetic field evolution scenario for brown dwarfs and giant planets

    Full text link
    Very little is known about magnetic fields of extrasolar planets and brown dwarfs. We use the energy flux scaling law presented by Christensen et al. (2009) to calculate the evolution of average magnetic fields in extrasolar planets and brown dwarfs under the assumption of fast rotation, which is probably the case for most of them. We find that massive brown dwarfs of about 70 M_Jup can have fields of a few kilo-Gauss during the first few hundred Million years. These fields can grow by a factor of two before they weaken after deuterium burning has stopped. Brown dwarfs with weak deuterium burning and extrasolar giant planets start with magnetic fields between ~100G and ~1kG at the age of a few Myr, depending on their mass. Their magnetic field weakens steadily until after 10Gyr it has shrunk by about a factor of 10. We use observed X-ray luminosities to estimate the age of the known extrasolar giant planets that are more massive than 0.3M_Jup and closer than 20pc. Taking into account the age estimate, and assuming sun-like wind-properties and radio emission processes similar to those at Jupiter, we calculate their radio flux and its frequency. The highest radio flux we predict comes out as 700mJy at a frequency around 150MHz for τ\tauBoob, but the flux is below 60mJy for the rest. Most planets are expected to emit radiation between a few Mhz and up to 100MHz, well above the ionospheric cutoff frequency.Comment: 7 pages, accepted by A&

    Predicting low-frequency radio fluxes of known extrasolar planets

    Full text link
    Context. Close-in giant extrasolar planets (''Hot Jupiters'') are believed to be strong emitters in the decametric radio range. Aims. We present the expected characteristics of the low-frequency magnetospheric radio emission of all currently known extrasolar planets, including the maximum emission frequency and the expected radio flux. We also discuss the escape of exoplanetary radio emission from the vicinity of its source, which imposes additional constraints on detectability. Methods. We compare the different predictions obtained with all four existing analytical models for all currently known exoplanets. We also take care to use realistic values for all input parameters. Results. The four different models for planetary radio emission lead to very different results. The largest fluxes are found for the magnetic energy model, followed by the CME model and the kinetic energy model (for which our results are found to be much less optimistic than those of previous studies). The unipolar interaction model does not predict any observable emission for the present exoplanet census. We also give estimates for the planetary magnetic dipole moment of all currently known extrasolar planets, which will be useful for other studies. Conclusions. Our results show that observations of exoplanetary radio emission are feasible, but that the number of promising targets is not very high. The catalog of targets will be particularly useful for current and future radio observation campaigns (e.g. with the VLA, GMRT, UTR-2 and with LOFAR).Comment: 4 figures; Table 1 is available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/475/35

    The Sun in Time: Age, Rotation, and Magnetic Activity of the Sun and Solar-type Stars and Effects on Hosted Planets

    Full text link
    Multi-wavelength studies of solar analogs (G0-5 V stars) with ages from ~50 Myr to 9 Gyr have been carried out as part of the "Sun in Time" program for nearly 20 yrs. From these studies it is inferred that the young (ZAMS) Sun was rotating more than 10x faster than today. As a consequence, young solar-type stars and the early Sun have vigorous magnetohydrodynamic (MHD) dynamos and correspondingly strong coronal X-ray and transition region / chromospheric FUV-UV emissions. To ensure continuity and homogeneity for this program, we use a restricted sample of G0-5 V stars with masses, radii, T(eff), and internal structure (i.e. outer convective zones) closely matching those of the Sun. From these analogs we have determined reliable rotation-age-activity relations and X-ray - UV (XUV) spectral irradiances for the Sun (or any solar-type star) over time. These XUV irradiance measures serve as input data for investigating the photo-ionization and photo-chemical effects of the young, active Sun on the paleo-planetary atmospheres and environments of solar system planets. These measures are also important to study the effects of these high energy emissions on the numerous exoplanets hosted by solar-type stars of different ages. Recently we have extended the study to include lower mass, main-sequence (dwarf) dK and dM stars to determine relationships among their rotation spin-down rates and coronal and chromospheric emissions as a function of mass and age. From rotation-age-activity relations we can determine reliable ages for main-sequence G, K, M field stars and, subsequently, their hosted planets. Also inferred are the present and the past XUV irradiance and plasma flux exposures that these planets have endured and the suitability of the hosted planets to develop and sustain life.Comment: 12 pages, 6 figures; to appear in the proceedings of IAU 258: The Ages of Star

    Candidates for detecting exoplanetary radio emissions generated by magnetosphere-ionosphere coupling

    Full text link
    In this paper we consider the magnetosphere-ionosphere (M-I) coupling at Jupiter-like exoplanets with internal plasma sources such as volcanic moons, and we have determined the best candidates for detection of these radio emissions by estimating the maximum spectral flux density expected from planets orbiting stars within 25 pc using data listed in the NASA/IPAC/NExScI Star and Exoplanet Database (NStED). In total we identify 91 potential targets, of which 40 already host planets and 51 have stellar X-ray luminosity 100 times the solar value. In general, we find that stronger planetary field strength, combined with faster rotation rate, higher stellar XUV luminosity, and lower stellar wind dynamic pressure results in higher radio power. The top two targets for each category are ϵ\epsilon Eri and HIP 85523, and CPD-28 332 and FF And.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Society Letter

    Atmospheric effects of stellar cosmic rays on Earth-like exoplanets orbiting M-dwarfs

    Full text link
    M-dwarf stars are generally considered favourable for rocky planet detection. However, such planets may be subject to extreme conditions due to possible high stellar activity. The goal of this work is to determine the potential effect of stellar cosmic rays on key atmospheric species of Earth-like planets orbiting in the habitable zone of M-dwarf stars and show corresponding changes in the planetary spectra. We build upon the cosmic rays model scheme of Grenfell et al. (2012), who considered cosmic ray induced NOx production, by adding further cosmic ray induced production mechanisms (e.g. for HOx) and introducing primary protons of a wider energy range (16 MeV - 0.5 TeV). Previous studies suggested that planets in the habitable zone that are subject to strong flaring conditions have high atmospheric methane concentrations, while their ozone biosignature is completely destroyed. Our current study shows, however, that adding cosmic ray induced HOx production can cause a decrease in atmospheric methane abundance of up to 80\%. Furthermore, the cosmic ray induced HOx molecules react with NOx to produce HNO3_3, which produces strong HNO3_3 signals in the theoretical spectra and reduces NOx-induced catalytic destruction of ozone so that more than 25\% of the ozone column remains. Hence, an ozone signal remains visible in the theoretical spectrum (albeit with a weaker intensity) when incorporating the new cosmic ray induced NOx and HOx schemes, even for a constantly flaring M-star case. We also find that HNO3_3 levels may be high enough to be potentially detectable. Since ozone concentrations, which act as the key shield against harmful UV radiation, are affected by cosmic rays via NOx-induced catalytic destruction of ozone, the impact of stellar cosmic rays on surface UV fluxes is also studied.Comment: 14 pages, 12 figure

    Galactic cosmic rays on extrasolar Earth-like planets I. Cosmic ray flux

    Full text link
    (abridged abstract) Theoretical arguments indicate that close-in terrestial exoplanets may have weak magnetic fields, especially in the case of planets more massive than Earth (super-Earths). Planetary magnetic fields, however, constitute one of the shielding layers that protect the planet against cosmic-ray particles. In particular, a weak magnetic field results in a high flux of Galactic cosmic rays that extends to the top of the planetary atmosphere. We wish to quantify the flux of Galactic cosmic rays to an exoplanetary atmosphere as a function of the particle energy and of the planetary magnetic moment. We numerically analyzed the propagation of Galactic cosmic-ray particles through planetary magnetospheres. We evaluated the efficiency of magnetospheric shielding as a function of the particle energy (in the range 16 MeV \le E \le 524 GeV) and as a function of the planetary magnetic field strength (in the range 0 M{M}_\oplus \le {M} \le 10 M{M}_\oplus). Combined with the flux outside the planetary magnetosphere, this gives the cosmic-ray energy spectrum at the top of the planetary atmosphere as a function of the planetary magnetic moment. We find that the particle flux to the planetary atmosphere can be increased by more than three orders of magnitude in the absence of a protecting magnetic field. For a weakly magnetized planet (M=0.05M{M}=0.05\,{M}_{\oplus}), only particles with energies below 512 MeV are at least partially shielded. For a planet with a magnetic moment similar to Earth, this limit increases to 32 GeV, whereas for a strongly magnetized planet (M=10.0MM=10.0\,{M}_{\oplus}), partial shielding extends up to 200 GeV. We find that magnetic shielding strongly controls the number of cosmic-ray particles reaching the planetary atmosphere. The implications of this increased particle flux are discussed in a companion article.Comment: 10 pages, 9 figures; accepted in A&

    Planet-Induced Emission Enhancements in HD 179949: Results from McDonald Observations

    Full text link
    We monitored the Ca II H and K lines of HD 179949, a notable star in the southern hemisphere, to observe and confirm previously identified planet induced emission (PIE) as an effect of star-planet interaction. We obtained high resolution spectra (R ~ 53,000) with a signal-to-noise ratio S/N >~ 50 in the Ca II H and K cores during 10 nights of observation at the McDonald Observatory. Wide band echelle spectra were taken using the 2.7 m telescope. Detailed statistical analysis of Ca II K revealed fluctuations in the Ca II K core attributable to planet induced chromospheric emission. This result is consistent with previous studies by Shkolnik et al. (2003). Additionally, we were able to confirm the reality and temporal evolution of the phase shift of the maximum of star-planet interaction previously found. However, no identifiable fluctuations were detected in the Ca II H core. The Al I lambda 3944 A line was also monitored to gauge if the expected activity enhancements are confined to the chromospheric layer. Our observations revealed some variability, which is apparently unassociated with planet induced activity.Comment: 11 pages, 11 figures, 5 tables; Publications of the Astronomical Society of Australia (in press

    On the protection of extrasolar Earth-like planets around K/M stars against galactic cosmic rays

    Full text link
    Previous studies have shown that extrasolar Earth-like planets in close-in habitable zones around M-stars are weakly protected against galactic cosmic rays (GCRs), leading to a strongly increased particle flux to the top of the planetary atmosphere. Two main effects were held responsible for the weak shielding of such an exoplanet: (a) For a close-in planet, the planetary magnetic moment is strongly reduced by tidal locking. Therefore, such a close-in extrasolar planet is not protected by an extended magnetosphere. (b) The small orbital distance of the planet exposes it to a much denser stellar wind than that prevailing at larger orbital distances. This dense stellar wind leads to additional compression of the magnetosphere, which can further reduce the shielding efficiency against GCRs. In this work, we analyse and compare the effect of (a) and (b), showing that the stellar wind variation with orbital distance has little influence on the cosmic ray shielding. Instead, the weak shielding of M star planets can be attributed to their small magnetic moment. We further analyse how the planetary mass and composition influence the planetary magnetic moment, and thus modify the cosmic ray shielding efficiency. We show that more massive planets are not necessarily better protected against galactic cosmic rays, but that the planetary bulk composition can play an important role.Comment: 7 figure

    Galactic cosmic rays on extrasolar Earth-like planets: II. Atmospheric implications

    Full text link
    (abridged abstract) Theoretical arguments indicate that close-in terrestial exoplanets may have weak magnetic fields. As described in the companion article (Paper I), a weak magnetic field results in a high flux of galactic cosmic rays to the top of the planetary atmosphere. We investigate effects that may result from a high flux of galactic cosmic rays both throughout the atmosphere and at the planetary surface. Using an air shower approach, we calculate how the atmospheric chemistry and temperature change under the influence of galactic cosmic rays for Earth-like (N_2-O_2 dominated) atmospheres. We evaluate the production and destruction rate of atmospheric biosignature molecules. We derive planetary emission and transmission spectra to study the influence of galactic cosmic rays on biosignature detectability. We then calculate the resulting surface UV flux, the surface particle flux, and the associated equivalent biological dose rates. We find that up to 20% of stratospheric ozone is destroyed by cosmic-ray protons. The reduction of the planetary ozone layer leads to an increase in the weighted surface UV flux by two orders of magnitude under stellar UV flare conditions. The resulting biological effective dose rate is, however, too low to strongly affect surface life. We also examine the surface particle flux: For a planet with a terrestrial atmosphere, a reduction of the magnetic shielding efficiency can increase the biological radiation dose rate by a factor of two. For a planet with a weaker atmosphere (with a surface pressure of 97.8 hPa), the planetary magnetic field has a much stronger influence on the biological radiation dose, changing it by up to two orders of magnitude.Comment: 14 pages, 9 figures, published in A&
    corecore