181 research outputs found
Simultaneous or Sequential Orthogonal Gradient Formation in a 3D Cell Culture Microfluidic Platform
Biochemical gradients are ubiquitous in biology. At the tissue level, they dictate differentiation patterning or cell migration. Recapitulating in vitro the complexity of such concentration profiles with great spatial and dynamic control is crucial in order to understand the underlying mechanisms of biological phenomena. Here, a microfluidic design capable of generating diffusion-driven, simultaneous or sequential, orthogonal linear concentration gradients in a 3D cell-embedded scaffold is described. Formation and stability of the orthogonal gradients are demonstrated by computational and fluorescent dextran-based characterizations. Then, system utility is explored in two biological systems. First, stem cells are subjected to orthogonal gradients of morphogens in order to mimic the localized differentiation of motor neurons in the neural tube. Similarly to in vivo, motor neurons preferentially differentiate in regions of high concentration of retinoic acid and smoothened agonist (acting as sonic hedgehog), in a concentration-dependent fashion. Then, a rotating gradient is applied to HT1080 cancer cells and the change in migration direction is investigated as the cells adapt to a new chemical environment. The response time of ≈4 h is reported. These two examples demonstrate the versatility of this new design that can also prove useful in many applications including tissue engineering and drug screening.National Science Foundation. Science and Technology Center for Emergent Behaviors of Integrated Cellular Systems (Grant No. CBET-0939511)National Institutes of Health (U.S.) (NIH NRSA/UNCF Merck
A Role for Cdc42 in Macrophage Chemotaxis
Three members of the Rho family, Cdc42, Rac, and Rho are known to regulate the organization of actin-based cytoskeletal structures. In Bac1.2F5 macrophages, we have shown that Rho regulates cell contraction, whereas Rac and Cdc42 regulate the formation of lamellipodia and filopodia, respectively. We have now tested the roles of Cdc42, Rac, and Rho in colony stimulating factor-1 (CSF-1)–induced macrophage migration and chemotaxis using the Dunn chemotaxis chamber. Microinjection of constitutively activated RhoA, Rac1, or Cdc42 inhibited cell migration, presumably because the cells were unable to polarize significantly in response to CSF-1. Both Rho and Rac were required for CSF-1–induced migration, since migration speed was reduced to background levels in cells injected with C3 transferase, an inhibitor of Rho, or with the dominant-negative Rac mutant, N17Rac1. In contrast, cells injected with the dominant-negative Cdc42 mutant, N17Cdc42, were able to migrate but did not polarize in the direction of the gradient, and chemotaxis towards CSF-1 was abolished
The Role of the Calcium and the Voltage Clocks in Sinoatrial Node Dysfunction
Recent evidence indicates that the voltage clock (cyclic activation and deactivation of membrane ion channels) and Ca2+ clocks (rhythmic spontaneous sarcoplasmic reticulum Ca2+ release) jointly regulate sinoatrial node (SAN) automaticity. However, the relative importance of the voltage clock and Ca2+ clock for pacemaking was not revealed in sick sinus syndrome. Previously, we mapped the intracellular calcium (Cai) and membrane potentials of the normal intact SAN simultaneously using optical mapping in Langendorff-perfused canine right atrium. We demonstrated that the sinus rate increased and the leading pacemaker shifted to the superior SAN with robust late diastolic Cai elevation (LDCAE) during β-adrenergic stimulation. We also showed that the LDCAE was caused by spontaneous diastolic sarcoplasmic reticulum (SR) Ca2+ release and was closely related to heart rate changes. In contrast, in pacing induced canine atrial fibrillation and SAN dysfunction models, Ca2+ clock of SAN was unresponsiveness to β-adrenergic stimulation and caffeine. Ryanodine receptor 2 (RyR2) in SAN was down-regulated. Using the prolonged low dose isoproterenol together with funny current block, we produced a tachybradycardia model. In this model, chronically elevated sympathetic tone results in abnormal pacemaking hierarchy in the right atrium, including suppression of the superior SAN and enhanced pacemaking from ectopic sites. Finally, if the LDCAE was too small to trigger an action potential, then it induced only delayed afterdepolarization (DAD)-like diastolic depolarization (DD). The failure of DAD-like DD to consistently trigger a sinus beat is a novel mechanism of atrial arrhythmogenesis. We conclude that dysfunction of both the Ca2+ clock and the voltage clock are important in sick sinus syndrome
EKV mutant connexin 31 associated cell death is mediated by ER stress
The epidermis expresses a number of connexin (Cx) proteins that are implicated in gap junction-mediated cell communication. Distinct dominantly inherited mutations in Cx31 cause the skin disease erythrokeratoderma variabilis (EKV) and hearing loss with or without neuropathy. Functional studies reveal tissue-specific effects of these Cx31 disease-associated mutations. The Cx31 mutants (R42P)Cx31, (C86S)Cx31 and (G12D)Cx31 are associated with EKV and the mutant (66delD)Cx31 with peripheral neuropathy and hearing loss, however the mechanisms of pathogenesis remain to be elucidated. Expression of (R42P)Cx31, (C86S)Cx31 and (G12D)Cx31 in vitro, but not (WT)Cx31 or (66delD)Cx31, cause elevated levels of cell-type specific cell death. Previous studies suggest that Cx-associated cell death may be related to abnormal ‘leaky’ hemichannels but we produced direct evidence against that being the major mechanism. Additionally, our immunocytochemistry showed upregulation of components of the unfolded protein response (UPR) in cells expressing the EKV-associated Cx31 mutants but not (WT)Cx31 or (66delD)Cx31. We conclude that the endoplasmic reticulum (ER) stress leading to the UPR is the main mechanism of mutant Cx31-associated cell death. These results indicate that, in vivo, ER stress may lead to abnormal keratinocyte differentiation and hyperproliferation in EKV patient skin
Antigen Receptor–Induced Activation and Cytoskeletal Rearrangement Are Impaired in Wiskott-Aldrich Syndrome Protein–Deficient Lymphocytes
The Wiskott-Aldrich syndrome protein (WASp) has been implicated in modulation of lymphocyte activation and cytoskeletal reorganization. To address the mechanisms whereby WASp subserves such functions, we have examined WASp roles in lymphocyte development and activation using mice carrying a WAS null allele (WAS−/−). Enumeration of hemopoietic cells in these animals revealed total numbers of thymocytes, peripheral B and T lymphocytes, and platelets to be significantly diminished relative to wild-type mice. In the thymus, this abnormality was associated with impaired progression from the CD44−CD25+ to the CD44−CD25− stage of differentiation. WASp-deficient thymocytes and T cells also exhibited impaired proliferation and interleukin (IL)-2 production in response to T cell antigen receptor (TCR) stimulation, but proliferated normally in response to phorbol ester/ionomycin. This defect in TCR signaling was associated with a reduction in TCR-evoked upregulation of the early activation marker CD69 and in TCR-triggered apoptosis. While induction of TCR-ζ, ZAP70, and total protein tyrosine phosphorylation as well as mitogen-activated protein kinase (MAPK) and stress-activated protein/c-Jun NH2-terminal kinase (SAPK/JNK) activation appeared normal in TCR-stimulated WAS−/− cells, TCR-evoked increases in intracellular calcium concentration were decreased in WASp-deficient relative to wild-type cells. WAS−/− lymphocytes also manifested a marked reduction in actin polymerization and both antigen receptor capping and endocytosis after TCR stimulation, whereas WAS−/− neutrophils exhibited reduced phagocytic activity. Together, these results provide evidence of roles for WASp in driving lymphocyte development, as well as in the translation of antigen receptor stimulation to proliferative or apoptotic responses, cytokine production, and cytoskeletal rearrangement. The data also reveal a role for WASp in modulating endocytosis and phagocytosis and, accordingly, suggest that the immune deficit conferred by WASp deficiency reflects the disruption of a broad range of cellular behaviors
Comparative analytical performance of multiple plasma Aβ42 and Aβ40 assays and their ability to predict positron emission tomography amyloid positivity
INTRODUCTION: This report details the approach taken to providing a dataset allowing for analyses on the performance of recently developed assays of amyloid beta (Aβ) peptides in plasma and the extent to which they improve the prediction of amyloid positivity. METHODS: Alzheimer's Disease Neuroimaging Initiative plasma samples with corresponding amyloid positron emission tomography (PET) data were run on six plasma Aβ assays. Statistical tests were performed to determine whether the plasma Aβ measures significantly improved the area under the receiver operating characteristic curve for predicting amyloid PET status compared to age and apolipoprotein E (APOE) genotype. RESULTS: The age and APOE genotype model predicted amyloid status with an area under the curve (AUC) of 0.75. Three assays improved AUCs to 0.81, 0.81, and 0.84 (P < .05, uncorrected for multiple comparisons). DISCUSSION: Measurement of Aβ in plasma contributes to addressing the amyloid component of the ATN (amyloid/tau/neurodegeneration) framework and could be a first step before or in place of a PET or cerebrospinal fluid screening study. HIGHLIGHTS: The Foundation of the National Institutes of Health Biomarkers Consortium evaluated six plasma amyloid beta (Aβ) assays using Alzheimer's Disease Neuroimaging Initiative samples. Three assays improved prediction of amyloid status over age and apolipoprotein E (APOE) genotype. Plasma Aβ42/40 predicted amyloid positron emission tomography status better than Aβ42 or Aβ40 alone
Study of the chemotactic response of multicellular spheroids in a microfluidic device
YesWe report the first application of a microfluidic device to observe chemotactic migration in
multicellular spheroids. A microfluidic device was designed comprising a central microchamber
and two lateral channels through which reagents can be introduced. Multicellular
spheroids were embedded in collagen and introduced to the microchamber. A gradient of
fetal bovine serum (FBS) was established across the central chamber by addition of growth
media containing serum into one of the lateral channels. We observe that spheroids of oral
squamous carcinoma cells OSC–19 invade collectively in the direction of the gradient of
FBS. This invasion is more directional and aggressive than that observed for individual cells
in the same experimental setup. In contrast to spheroids of OSC–19, U87-MG multicellular
spheroids migrate as individual cells. A study of the exposure of spheroids to the chemoattractant
shows that the rate of diffusion into the spheroid is slow and thus, the chemoattractant
wave engulfs the spheroid before diffusing through it.This work has been supported by National Research Program of Spain (DPI2011-28262-c04-01) and by the project "MICROANGIOTHECAN" (CIBERBBN, IMIBIC and SEOM). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Critical Roles of the WASP N-Terminal Domain and Btk in LPS-Induced Inflammatory Response in Macrophages
While Wiskott-Aldrich syndrome protein (WASP) plays critical roles in TCR signaling as an adaptor molecule, how it transduces innate immune signals remains to be elucidated. To investigate the roles of WASP in innate immune cells, we established bone marrow-derived macrophage (BMDM) cell lines from WASP15 transgenic (Tg) mice overexpressing the WASP N-terminal region (exons 1–5). Upon LPS stimulation, WASP15 Tg BMDM cell lines produce lower levels of inflammatory cytokines, such as TNF-α, IL-6, and IL-12p40 than the wild-type BMDM cell line. In addition, the production of nitric oxide by WASP15 Tg BMDM cells in response to LPS and IFN-γ was significantly impaired. Furthermore, we uncovered that the WASP N-terminal domain associates with the Src homology (SH) 3 domain of Bruton's tyrosine kinase (Btk). Overexpression of the WASP N-terminal domain diminishes the extent of tyrosine phosphorylation of endogenous WASP in WASP15 Tg BMDM cells, possibly by interfering with the specific binding between endogenous WASP and Btk during LPS signaling. These observations strongly suggest that the interaction between WASP N-terminal domain and Btk plays important roles in the LPS signaling cascade in innate immunity
Chemotaxis of Cell Populations through Confined Spaces at Single-Cell Resolution
Cell migration is crucial for both physiological and pathological processes. Current in vitro cell motility assays suffer from various drawbacks, including insufficient temporal and/or optical resolution, or the failure to include a controlled chemotactic stimulus. Here, we address these limitations with a migration chamber that utilizes a self-sustaining chemotactic gradient to induce locomotion through confined environments that emulate physiological settings. Dynamic real-time analysis of both population-scale and single-cell movement are achieved at high resolution. Interior surfaces can be functionalized through adsorption of extracellular matrix components, and pharmacological agents can be administered to cells directly, or indirectly through the chemotactic reservoir. Direct comparison of multiple cell types can be achieved in a single enclosed system to compare inherent migratory potentials. Our novel microfluidic design is therefore a powerful tool for the study of cellular chemotaxis, and is suitable for a wide range of biological and biomedical applications
Directed cell migration in multi-cue environments
Cell migration plays a critical role in development, angiogenesis, immune response, wound healing and cancer metastasis. During these processes, cells are often directed to migrate towards targets by sensing aligned fibers or gradients in concentration, mechanical properties or electric field. Often times, cells must integrate migrational information from several of these different cues. While the cell migration behavior, signal transduction and cytoskeleton dynamics elicited by individual directional cues has been largely determined, responses to multiple directional cues are much less understood. However, initial work has pointed to several interesting behaviors in multi-cue environments, including competition and cooperation between cues to determine the migrational responses of cells. Much of the work on multi-cue sensing has been driven by the recent development of approaches to systematically and simultaneously control directional cues in vitro coupled with analysis and modeling that quantitatively describe those responses. In this review we present an overview of multi-cue directed migration with an emphasis on how cues compete or cooperate. We outline how multi-cue responses such as cue dominance might change depending on other environmental inputs. Finally, the challenges associated with the design of the environments to control multiple cues and the analysis and modeling of cell migration in multi-cue environments as well as some interesting biological questions associated with migration in complex environments are discussed. Understanding multi-cue migrational responses is critical to the mechanistic description of physiology and pathology, but also to the design of engineered tissues, where cell migration must be orchestrated to form specific tissue structures
- …