497 research outputs found

    Mutations in protocadherin 15 and cadherin 23 affect tip links and mechanotransduction in mammalian sensory hair cells

    Get PDF
    Immunocytochemical studies have shown that protocadherin-15 (PCDH15) and cadherin-23 (CDH23) are associated with tip links, structures thought to gate the mechanotransducer channels of hair cells in the sensory epithelia of the inner ear. The present report describes functional and structural analyses of hair cells from Pcdh15av3J (av3J), Pcdh15av6J (av6J) and Cdh23v2J (v2J) mice. The av3J and v2J mice carry point mutations that are predicted to introduce premature stop codons in the transcripts for Pcdh15 and Cdh23, respectively, and av6J mice have an in-frame deletion predicted to remove most of the 9th cadherin ectodomain from PCDH15. Severe disruption of hair-bundle morphology is observed throughout the early-postnatal cochlea in av3J/av3J and v2J/v2J mice. In contrast, only mild-to-moderate bundle disruption is evident in the av6J/av6J mice. Hair cells from av3J/av3J mice are unaffected by aminoglycosides and fail to load with [3H]-gentamicin or FM1-43, compounds that permeate the hair cell's mechanotransducer channels. In contrast, hair cells from av6J/av6J mice load with both FM1-43 and [3H]-gentamicin, and are aminoglycoside sensitive. Transducer currents can be recorded from hair cells of all three mutants but are reduced in amplitude in all mutants and have abnormal directional sensitivity in the av3J/av3J and v2J/v2J mutants. Scanning electron microscopy of early postnatal cochlear hair cells reveals tip-link like links in av6J/av6J mice, substantially reduced numbers of links in the av3J/av3J mice and virtually none in the v2J/v2J mice. Analysis of mature vestibular hair bundles reveals an absence of tip links in the av3J/av3J and v2J/v2J mice and a reduction in av6J/av6J mice. These results therefore provide genetic evidence consistent with PCDH15 and CDH23 being part of the tip-link complex and necessary for normal mechanotransduction

    Position statement for the diagnosis and management of anogenital warts

    Get PDF
    Background: Anogenital warts (AGW) can cause economic burden on healthcare systems and are associated with emotional, psychological and physical issues. ----- Objective: To provide guidance to physicians on the diagnosis and management of AGW. ----- Methods: Fourteen global experts on AGW developed guidance on the diagnosis and management of AGW in an effort to unify international recommendations. Guidance was developed based on published international and national AGW guidelines and an evaluation of relevant literature published up to August 2016. Authors provided expert opinion based on their clinical experiences. ----- Results: A checklist for a patient's initial consultation is provided to help physicians when diagnosing AGW to get the relevant information from the patient in order to manage and treat the AGW effectively. A number of frequently asked questions are also provided to aid physicians when communicating with patients about AGW. Treatment of AGW should be individualized and selected based on the number, size, morphology, location, and keratinization of warts, and whether they are new or recurrent. Different techniques can be used to treat AGW including ablation, immunotherapy and other topical therapies. Combinations of these techniques are thought to be more effective at reducing AGW recurrence than monotherapy. A simplified algorithm was created suggesting patients with 1-5 warts should be treated with ablation followed by immunotherapy. Patients with >5 warts should use immunotherapy for 2 months followed by ablation and a second 2-month course of immunotherapy. Guidance for daily practice situations and the subsequent action that can be taken, as well as an algorithm for treatment of large warts, were also created. ----- Conclusion: The guidance provided will help physicians with the diagnosis and management of AGW in order to improve the health and quality of life of patients with AGW

    A nonsynonymous SNP within PCDH15 is associated with lipid traits in familial combined hyperlipidemia

    Get PDF
    Familial combined hyperlipidemia (FCHL) is a common lipid disorder characterized by the presence of multiple lipoprotein phenotypes that increase the risk of premature coronary heart disease. In a previous study, we identified an intragenic microsatellite marker within the protocadherin 15 (PCDH15) gene to be associated with high triglycerides (TGs) in Finnish dyslipidemic families. In this study we analyzed all four known nonsynonymous SNPs within PCDH15 in 1,268 individuals from Finnish and Dutch multigenerational families with FCHL. Association analyses of quantitative traits for SNPs were performed using the QTDT test. The nonsynonymous SNP rs10825269 resulted in a P = 0.0006 for the quantitative TG trait. Additional evidence for association was observed with the same SNP for apolipoprotein B levels (apo-B) (P = 0.0001) and total cholesterol (TC) levels (P = 0.001). None of the other three SNPs tested showed a significant association with any lipid-related trait. We investigated the expression of PCDH15 in different human tissues and observed that PCDH15 is expressed in several tissues including liver and pancreas. In addition, we measured the plasma lipid levels in mice with loss-of-function mutations in Pcdh15 (Pcdh15av-Tg and Pcdh15av-3J) to investigate possible abnormalities in their lipid profile. We observed a significant difference in plasma TG and TC concentrations for the Pcdh15av-3J carriers when compared with the wild type (P = 0.013 and P = 0.044, respectively). Our study suggests that PCDH15 is associated with lipid abnormalities

    Role for a Novel Usher Protein Complex in Hair Cell Synaptic Maturation

    Get PDF
    The molecular mechanisms underlying hair cell synaptic maturation are not well understood. Cadherin-23 (CDH23), protocadherin-15 (PCDH15) and the very large G-protein coupled receptor 1 (VLGR1) have been implicated in the development of cochlear hair cell stereocilia, while clarin-1 has been suggested to also play a role in synaptogenesis. Mutations in CDH23, PCDH15, VLGR1 and clarin-1 cause Usher syndrome, characterized by congenital deafness, vestibular dysfunction and retinitis pigmentosa. Here we show developmental expression of these Usher proteins in afferent spiral ganglion neurons and hair cell synapses. We identify a novel synaptic Usher complex comprised of clarin-1 and specific isoforms of CDH23, PCDH15 and VLGR1. To establish the in vivo relevance of this complex, we performed morphological and quantitative analysis of the neuronal fibers and their synapses in the Clrn1−/− mouse, which was generated by incomplete deletion of the gene. These mice showed a delay in neuronal/synaptic maturation by both immunostaining and electron microscopy. Analysis of the ribbon synapses in Ames waltzerav3J mice also suggests a delay in hair cell synaptogenesis. Collectively, these results show that, in addition to the well documented role for Usher proteins in stereocilia development, Usher protein complexes comprised of specific protein isoforms likely function in synaptic maturation as well

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Liver fibrosis secondary to bile duct injury: correlation of Smad7 with TGF-β and extracellular matrix proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Liver fibrosis is the result of continuous liver injury stemming from different etiological factors. Bile duct injury induces an altered expression of TGF-β, which has an important role in liver fibrosis because this cytokine induces the expression of target genes such as collagens, PAI-1, TIMPs, and others that lead to extracellular matrix deposition. Smad7 is the principal inhibitor that regulates the target gene transcription of the TGF-β signaling. The aim of the study was to determine whether Smad7 mRNA expression correlates with the gene expression of <it>TGF-β, Col I</it>, <it>Col III</it>, <it>Col IV</it>, or <it>PAI-1 </it>in liver fibrosis secondary to bile duct injury (BDI).</p> <p>Results</p> <p>Serum TGF-β concentration was higher in BDI patients (39 296 pg/ml) than in liver donors (9008 pg/ml). Morphometric analysis of liver sections showed 41.85% of tissue contained fibrotic deposits in BDI patients. mRNA expression of Smad7, Col I, and PAI-1 was also significantly higher (<it>P </it>< 0.05) in patients with BDI than in controls. Smad7 mRNA expression correlated significantly with TGF-β concentration, Col I and Col III expression, and the amount of fibrosis.</p> <p>Conclusion</p> <p>We found augmented serum concentration of TGF-β and an increase in the percentage of fibrotic tissue in the liver of BDI patients. Contrary to expected results, the 6-fold increase in <it>Smad7 </it>expression did not inhibit the expression of <it>TGF-β, collagens</it>, and <it>PAI-1</it>. We also observed greater expression of Col I and Col III mRNA in BDI patients and significant correlations between their expression and TGF-β concentration and Smad7 mRNA expression.</p

    Amiloride Enhances Antigen Specific CTL by Faciliting HBV DNA Vaccine Entry into Cells

    Get PDF
    The induction of relatively weak immunity by DNA vaccines in humans can be largely attributed to the low efficiency of transduction of somatic cells. Although formulation with liposomes has been shown to enhance DNA transduction of cultured cells, little, if any, effect is observed on the transduction of somatic tissues and cells. To improve the rate of transduction, DNA vaccine delivery by gene gun and the recently developed electroporation techniques have been employed. We report here that to circumvent requirement for such equipment, amiloride, a drug that is prescribed for hypertension treatment, can accelerate plasmid entry into antigen presenting cells (APCs) both in vitro and in vivo. The combination induced APCs more dramatically in both maturation and cytokine secretion. Amiloride enhanced development of full CD8 cytolytic function including induction of high levels of antigen specific CTL and expression of IFN-γ+perforin+granzymeB+ in CD8+ T cells. Thus, amiloride is a facilitator for DNA transduction into host cells which in turn enhances the efficiency of the immune responses

    PI3K Signaling in Normal B Cells and Chronic Lymphocytic Leukemia (CLL).

    Get PDF
    B cells provide immunity to extracellular pathogens by secreting a diverse repertoire of antibodies with high affinity and specificity for exposed antigens. The B cell receptor (BCR) is a transmembrane antibody, which facilitates the clonal selection of B cells producing secreted antibodies of the same specificity. The diverse antibody repertoire is generated by V(D)J recombination of heavy and light chain genes, whereas affinity maturation is mediated by activation-induced cytidine deaminase (AID)-mediated mutagenesis. These processes, which are essential for the generation of adaptive humoral immunity, also render B cells susceptible to chromosomal rearrangements and point mutations that in some cases lead to cancer. In this chapter, we will review the central role of PI3K s in mediating signals from the B cell receptor that not only facilitate the development of functional B cell repertoire, but also support the growth and survival of neoplastic B cells, focusing on chronic lymphocytic leukemia (CLL) B cells. Perhaps because of the central role played by PI3K in BCR signaling, B cell leukemia and lymphomas are the first diseases for which a PI3K inhibitor has been approved for clinical use
    corecore