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Abstract

In this work, the existence criteria of extremal solutions of periodic boundary value
problems for the first-order dynamic equations on time scales are given by using the
method of lower and upper solutions coupled with the monotone iterative
technique. Our results generalize and improve some existing results. Two examples
are provided to show the effectiveness and feasibility of the obtained results.
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1. Introduction
Recently, the theory of impulsive differential equations has been investigated exten-

sively in simulating processes and phenomena subject to short-time perturbations dur-

ing their evolution, moreover, such equations have a tremendous potential for

applications in biology, physics, epidemic models, engineering, ect. (see [1-4]). Espe-

cially, the study of impulsive dynamic equations on time scales has also attracted much

attention since it provides an unifying structure for differential equations in the contin-

uous cases and the finite difference equations in the discrete cases, see [5-17] and

references therein. Most of them were devoted to the existence of solutions for peri-

odic boundary value problems (PBVP) by means of some fixed point theorems [18-22]

such as the Tarski’s fixed point theorem [17], Guo-Krasnoselskii fixed-point theorem

[18], and twin fixed-point theorem in a cone [19], etc..

Li et al. [4] considered the following periodic boundary value problem with impulses⎧⎨
⎩
u′(t) = g(t, u(t), u(θ(t))), t ∈ J = [0,T], t �= tk,
�u(tk) = Ik(u(tk)), k = 1, 2, ..., p,
u(0) = u(T),

(1:1)

where 0 = t0 <t1 <t2 < ... <tp <tp+1 = T, J0 = J\{t1, ..., tp}, gÎ C(J × R2, R), and θ Î C(J,

R), 0 ≤ θ(t) ≤ t, t Î J, �u(tk) = u(t+k ) − u(tk).

In [6], the authors discussed the following periodic boundary value problem by using

the upper and lower solution method and monotone iterative technique⎧⎨
⎩
y�(t) = f (t, y(t)), t ∈ J := [0,T] ∩ T, t �= tk, k = 1, 2, ...,m,
Imp(y)(tk) := Ik(y(t

−
k )), k = 1, 2, ...,m,

y(0) = y(σ (T)).
(1:2)
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Although, the existence of extremal solutions to equation (1.2) was studied in [6] by

using the outlined method, the results were obtained only under the case: a ≤ b, where a
and b are the lower and upper solutions of PBVP (1.2), respectively. To the best of our

knowledge, while using the method of lower and upper solutions, one can consider the

problem under another case: a ≥ b, the readers can refer to [12,23-25] and references

therein. For example, in [23], He and Zhang analyzed the existence for the extremal solu-

tions to first order impulsive difference equations with periodic boundary conditions by

utilizing the monotone iterative technique under these two cases. However, there are few

papers to deal with the existence for the extremal solutions to periodic boundary value

problems of first order dynamic equations on time scales based on the method of lower

and upper solutions coupled with monotone iterative technique under these two cases.

Thus, in this paper, we make the first attempt to consider the following periodic boundary

value problem of first order dynamical equation on time scales:⎧⎨
⎩
y�(t) + p(t)yσ (t) = f (t, yσ (t)), t ∈ J := [0,T] ∩ T, t �= tk, k = 1, 2, ..., q,
�y(tk) = Ik(y(t

−
k )), k = 1, 2, ..., q,

y(0) = y(σ (T)),
(1:3)

where T is a time scale, T >0 is fixed. f Î C(J × R, R), Ik Î C(R, R), p : [0, T ]T ® [0,

∞) is rd-continuous, tk Î [0, T] ∩ T and 0 < t1 <... < tq < T. �y(tk) = y(t+k ) − y(t−k ),
y(t+k ) and y(t−k ) denote right and left limits of y(t) at t = tk in the sense of time scales

respectively, that is, tk + h Î [0, T] ∩ T for each h in a neighborhood of 0. s is a func-

tion that will be defined later and ys(t) = y(s(t)). The aim of this paper is to obtain the

existence criteria of extremal solutions of PBVP (1.3) under the two cases expressed

above. Our results extend and generalize the results of Geng et al. [6].

The remainder of this paper is organized as follows. Some preliminary definitions,

lemmas and notations on time scales are given in Section 2. In Sections 3 and 4, by

means of lower and upper solutions and monotone iterative technique, the existence of

extremal solutions for PBVP (1.3) is proved under two cases: the lower and upper solu-

tions with well-order and with reverse-order, respectively. Finally, two examples are

simplified to illustrate the effectiveness and feasibility of the obtained results.

2. Preliminaries
In this section, we state some fundamental definitions and results on time scales, we

refer readers to [5-11].

Let T be a nonempty closed subset (time scale) of R. We denote the forward and

backward jump operators s, r : T ® T as follows:

σ (t) = inf{s ∈ T|s > t} and ρ(t) = sup{ s ∈ T|s ¡ t} .

A point t Î T is called right-scattered, right-dense, left-scattered, left-dense respec-

tively if s (t) >t, s (t) = t, r(t) < t, r(t) = t holds. If T has a right-scattered minimum

m, then Tk = T\{m}; otherwise Tk = T. If T has a left-scattered maximum M, then Tk

= T\{M}; otherwise Tk = T.

A function f : T ® R is called right-dense continuous provided it is continuous at

every right-dense points in T and its left-side limits exist at every left-dense points in

T, write f Î Crd(T) = Crd(T, R).

Definition 2.1. For x : T ® R and t Î Tk, we define the delta derivative of x(t), xΔ(t),

to be the number (when it exists) with the property that, for any ε >0, there is a
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neighborhood U of t such that

|[x(σ (t)) − x(s)] − x�(t)[σ (t) − s]| < ε|σ (t) − s|, for all s ∈ U.

Remark 2.1. If T = R, xΔ(t) = x’(t) is the ordinary derivative, and if T = Z, xΔ(t) = x(t

+ 1) − x(t) is the usual forward difference operator.

Definition 2.2. F is called an antiderivative of a function f defined on T if FΔ(t) = f(t)

holds on Tk, then the delta integral is defined by

t∫
a

f (s)�s = F(t) − F(a).

Lemma 2.1 ([9]). If fΔ ≥ 0, then f is increasing.

Lemma 2.2 ([9]). Assume that f, g : T ® R are delta differentiable at t, then

(fg)�(t) = f�(t)g(t) + f (σ (t))g�(t) = g�(t)f (t) + g(σ (t))f�(t).

Definition 2.3. A function p : T ® R is called regressive if 1 + µ(t)p(t) ≠ 0 for all t Î
T, where µ(t) = s(t) − t, which is said to be the graininess function.

Definition 2.4. If p is a regressive function, then the generalized exponential func-

tion ep is defined by

ep(t, s) = exp

⎧⎨
⎩

t∫
s

ξμ(τ)(p(τ ))�τ

⎫⎬
⎭ , for s, t ∈ T

with the cylinder transformation

ξh(z) =
{ log(1+hz)

h , if h �= 0,
z, if h = 0,

Let p, q : T ® R be two regressive functions, we define

p ⊕ q = p + q + μpq, �p := − p
1 + μp

, p � q := p ⊕ (�q).

Then, the exponential function has some properties as follows.

Lemma 2.3 ([9]). Assume that p, q : T ® R are two regressive functions, then

(1) e0(t, s) ≡ 1, ep(t, t) ≡ 1;

(2) ep(t, s) = 1
ep(s,t)

= e�p(s, t);

(3) ep(t, u)ep(u, s) = ep(t, s);

(4) e�p (t, t0) = p(t)ep(t, t0)for t Î Tk, t0 Î T.

3. Well-ordered lower and upper solutions
In this section, we prove the existence theorem of extremal solutions for periodic

boundary value problem of first-order dynamic equations on time scales under the

case of a ≤ b, where a and b are lower and upper solutions of PBVP (1.3).

We assume for the remainder of this paper that the impulsive points tk, k = 1, 2, ..., q

are right dense, other cases may be considered similarly. Define the following space

PC = {y : [0, σ (T)] → R|yk ∈ C(Jk, R), k = 1, 2, . . . , q and there exist y(t+k) and y(t−k )
with y(t−k ) = y(tk), k = 1, 2, . . . , q},
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which is a Banach space with the norm ||y||PC = max{||yk||Jk , k = 0, 1, . . . , q}, where yk is
the restriction of y to Jk = (tk, tk+1] ⊂ (0, s(T)T], k = 1, 2, ..., q and J0 = [0, t1], tq+1 = s(T ).

Definition 3.1. A function y Î PC ∩ C1(J\{t1, t2, ..., tq}, R) is said to be a solution of

PBVP (1.3) if and only if y satisfies the dynamic equation

y�(t) + p(t)yσ (t) = f (t, yσ (t)), everywhere on J\{tk}, k = 1, 2, . . . , q,

the impulsive condition

�y(tk) = y(t+k ) − y(t+k ) = Ik(y(t
−
k )), k = 1, 2, . . . , q,

and the periodic boundary condition

y(0) = y(σ (T)).

Let h : T ® R be a rd-continuous function and consider the following periodic

boundary value problem⎧⎨
⎩
y�(t) +m(t)yσ (t) = h(t), t ∈ J\{tk}, k = 1, 2, . . . , q,
�y(tk) = −Lky(tk) + Ik(η(tk)) + Lkη(tk), k = 1, 2, . . . , q,
y(0) = y(σ (T)).

(3:1)

Lemma 3.1. y Î PC is a solution of PBV P (3.1) if and only if

y(t) =

σ (T)∫
0

G(t, s)h(s)�s +
∑

0<tk<σ (T)

G(t, tk)[−Lky(tk) + Ik(η(tk)) + Lkη(tk)], (3:2)

where h Î PC and

G(t, s) =

{
em(s,t)em(σ (T),0)
em(σ (T),0)−1 , 0 ≤ s ≤ t ≤ σ (T),

em(s,t)
em(σ (T),0)−1 , 0 ≤ t < s ≤ σ (T).

Proof. For the convenience of the reader, letting w(tk) = −Lky(tk) + Ik(h(tk)) + Lkh(tk),
k = 1, 2, ..., q.

If y is a solution of PBVP (3.1), for t Î (0, t1], we have

y(t) = em(0, t)y(0) +

t∫
0

em(s, t)h(s)�s, (3:3)

and

y(t−1 ) = em(0, t1)y(0) +

t1∫
0

em(s, t1)h(s)�s. (3:4)

For any t Î (t1, t2], in a similar way, we deduce that

y(t) = em(t1, t)y(t+1) +

t∫
t1

em(s, t)h(s)�s. (3:5)

From the fact that y(t+1) = y(t−1 ) + w(t1), this together with (3.4) and (3.5) yields that

y(t) = em(0, t)y(0) +

t∫
0

em(s, t)h(s)�s + em(t1, t)w(t1), t ∈ (t1, t2].
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Repeating the above procession, for t Î (tk, tk+1], it is not difficult to see that

y(t) = em(tk, t)y(t+k ) +

t∫
tk

em(s, t)h(s)�s, (3:6)

with

y(t−k ) = em(0, tk)y(0) +

tk∫
0

em(s, tk)h(s)�s +
∑

0<tj<tk

em(tj, tk)w(tj).

Consequently, it turns out that

y(t) = em(0, t)y(0) +

t∫
0

em(s, t)h(s)�s +
∑

0<tk<t

em(tk, t)w(tk) for all t ∈ J. (3:7)

Since y(0) = y(s (T)), then we have

y(0) = em(0, σ (T))y(0) +

σ (T)∫
0

em(s, σ (T))h(s)�s +
∑

0<tk<σ (T)

em(tk, σ (T))w(tk),

it follows

y(0) =
1

1 − em(0, σ (T))

⎡
⎢⎣

σ (T)∫
0

em(s, σ (T))h(s)�s +
∑

0<tk<σ (T)

em(tk, σ (T))w(tk)

⎤
⎥⎦ . (3:8)

Substituting (3.8) into (3.7), we obtain

y(t) =
em(0, t)

1 − em(0, σ (T))

⎡
⎢⎣

σ (T)∫
0

em(s, σ (T))h(s)�s +
∑

0<tk<σ (T)

em(tk, σ (T))w(tk)

⎤
⎥⎦

+

⎡
⎣ t∫

0

em(s, t)h(s)�s +
∑

0<tk<t

em(tk, t)w(tk)

⎤
⎦

=

t∫
0

[
em(0, t)em(s, σ (T))
1 − em(0, σ (T))

+ em(s, t)
]
h(s)�s +

σ (T)∫
t

em(0, t)em(s, σ (T))
1 − em(0, σ (T))

h(s)�s

+
∑

0<tk<t

[
em(0, tk)em(tk, σ (T))
1 − em(0, σ (T))

+ em(tk, t)
]
w(tk)

+
∑

t<tk<σ (T)

em(0, t)em(tk, σ (T))
1 − em(0, σ (T))

w(tk)

=

t∫
0

em(s, t)em(σ (T), 0)
em(σ (T), 0) − 1

h(s)�s +

σ (T)∫
t

em(s, t)
em(σ (T), 0) − 1

h(s)�s

+
∑

0<tk<t

em(tk, t)em(σ (T), 0)
em(σ (T), 0) − 1

w(tk) +
∑

t<tk<σ (T)

em(tk, t)
em(σ (T), 0) − 1

w(tk)

=

σ (T)∫
0

G(t, s)h(s)�s +
∑

0<tk<σ (T)

G(t, tk)w(tk).
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On the other hand, assume y(t) satisfies (3.2) and notice that⎡
⎢⎣

σ (T)∫
0

G(t, s)h(s)�s

⎤
⎥⎦

�

=
1

em(σ (T), 0) − 1

⎡
⎢⎣em(σ (T), 0)

t∫
0

em(s, t)h(s)�s +

σ (T)∫
t

em(s, t)h(s)�s

⎤
⎥⎦

=
em(σ (T), 0)

em(σ (T), 0) − 1

⎡
⎣ t∫

0

e�m(s, t)h(s)�s + em(t, σ (t)h(t)

⎤
⎦

+
1

em(σ (T), 0) − 1

⎡
⎢⎣

σ (T)∫
t

e�m(s, t)h(s)�s − em(t, σ (t)h(t)

⎤
⎥⎦

= �m

σ (T)∫
0

G(t, s)h(s)�s + h(t).

Analogously,⎡
⎣ ∑

0<tk<σ (T)

G(t, tk)w(tk)

⎤
⎦

�

= �m
∑

0<tk<σ (T)

G(t, tk)w(tk).

As a result,

y�(t) = �m

⎡
⎢⎣

σ (T)∫
0

G(t, s)h(s)�s +
∑

0<tk<σ (T)

G(t, tk)w(tk)

⎤
⎥⎦ + h(t)

= �my(t) + h(t)

= −m(t)yσ (t) + h(t).

Clearly, we have y(t+k ) − y(t−k ) = w(tk), y(0) = y(s(T)), for k = 1, 2, ..., q. The proof is

completed. □
Define an operator F as follows:

Fx(t) =

σ (T)∫
0

G(t, s)h(s)�s+
∑

0<tk<σ (T)

G(t, tk)
[−Lkx(tk) + Ik(η(tk)) + Lkη(tk)

]
, t ∈ [0, σ (T)].

In view of |G(t, tk)| ≤ | em(σ (T),0)
em(σ (T),0)−1 |, for x, y Î PC

|Fx(t) − Fy(t)| ≤
∑

0<tk<σ (T)

∣∣G(t, tk)Lk[x(tk) − y(tk)]
∣∣

≤
∣∣∣∣ em(σ (T), 0)
em(σ (T), 0) − 1

∣∣∣∣
m∑
k=1

|Lk| · ||x − y||.

Under the condition of
∣∣∣ em(σ (T),0)
em(σ (T),0)−1

∣∣∣ q∑
k=1

|Lk| < 1, the PBVP (3.1) has one unique

solution.
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Lemma 3.2. Suppose the following conditions hold

(i) The sequence {tk}qk=1satisfies 0 ≤ t0 < t1 <... < tq;

(ii) For k = 1, 2, ..., q, t ≥ t0, 1 − µ(t)m(t) >0, there are

y�(t) ≤ −m(t)yσ (t), (3:9)

y(t+k ) ≤ bky(tk), (3:10)

where bk are constants and bk >0.

Then

y(t) ≤ y(t0)
∏

t0<tk<t

bke�m(t, t0).

Proof. In view of (3.9), we have

[em(t, t0)y(t)]� = em(t, t0)y�(t) + y(σ (t))em(t, t0)m(t) ≤ 0.

It means that em(t, t0)y(t) is a non-increasing on [t0, s(T )]. So we can easily get

y(t) ≤ y(t0)e�m(t, t0), t ∈ (t0, t1]. (3:11)

For t Î (t1, t2], similarly, one can assert that

y(t) ≤ y(t+1)e�m(t, t1) ≤ b1e�m(t, t1)y(t1) ≤ y(t0)b1e�m(t, t0).

Continuing with this procedure, we can get that for t Î (tk, tk+1],

y(t) ≤ y(t+k )e�m(t, tk) ≤ bke�m(t, tk)y(tk) ≤ b1b2 · · · bky(t0)e�m(t, t0), (3:12)

proceed inductively to obtain

y(t) ≤ y(t0)
∏

t0<tk<t

bke�m(t, t0).

The proof is completed. □
Remark 3.1. If the inequalities of (3.9) and (3.10) are reversed, then the inequality in

the conclusion is also reversed.

Lemma 3.3. Assume
q∏

k=1

(1 − Lk)e�m(σ (T), 0) < 1, Lk <1 and

y�(t) ≤ −m(t)yσ (t) − ry(t), (3:13)

�y(tk) ≤ −Lky(tk) − dyk. (3:14)

Then, y(t) ≤ 0 for all t Î J, where

ry(t) =

{
0, y(0) ≤ y(σ (T)),
m(t)σ (t)+1

σ (T) [y(0) − y(σ (T))], y(0) > y(σ (T)),

and

dyk =

{
0, y(0) ≤ y(σ (T)),
Lktk
σ (T) [y(0) − y(σ (T))], y(0) > y(σ (T)).
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Proof. Case 1: when y(0) ≤ y(s (T)), obviously, we have ry(t) = 0, dyk = 0. From

Lemma 3.2, we see that,

y(t) ≤ y(0)
∏

0<tk<t

(1 − Lk)e�m(t, 0). (3:15)

Let t = s (T) to obtain

y(0) ≤ y(σ (T)) ≤ y(0)
∏

0<tk<σ (T)

(1 − Lk)e�m(σ (T), 0).

It means

y(0)

⎡
⎣1 −

∏
t0<tk<σ (T)

(1 − Lk)e�m(σ (T), 0)

⎤
⎦ ≤ 0,

then y(0) ≤ 0, returning to (3.15) we have y(t) ≤ 0, t Î J.

Case 2: when y(0) > y(s (T)), define ȳ(t) = y(t) + g(t), where

g(t) = t
σ (T)

[
y(0) − y(σ (T))

]
, t Î J. It is easy to check that g(0) = 0, ȳ(0) = ȳ(σ (T)) and

g(t) ≥ 0. Next, from (3.13) and (3.14), one can deduce that

ȳ�(t) = y�(t) + g�(t)

≤ −m(t)yσ (t) − ry(t) +
1

σ (T)
[y(0) − y(σ (T))]

= −m(t)yσ (t) − m(t)gσ (t)

= −m(t)ȳσ (t),

�ȳ(tk) = �y(tk) + �g(tk) ≤ −Lky(tk) − dyk = −Lk[y(tk) − g(tk)] = −Lkȳ(tk).

In view of case 1, one can easily see that ȳ(t) ≤ 0, it means y(t) + g(t) ≤ 0, this

together with g(t) ≥ 0 for t Î J guarantees that y(t) ≤ 0, t Î J. The proof is completed.

□
For a, b Î PC, we write a ≤ b if a(t) ≤ b(t) for all t Î J. In such a case, we denote

[α,β] = {y ∈ PC : α(t) ≤ y(t) ≤ β(t), t ∈ J}.

Now, we are in the position to establish the main result.

Theorem 3.1. Assumed that the following conditions are satisfied

(H1) There exist two functions : a, b Î PC ∩ C1(J\{t1, t2, ..., tq}, R) a(t) ≤ b(t) such
that {

α�(t) + p(t)ασ (t) ≤ f (t, ασ (t)) − rα(t), t ∈ J, t �= tk
�α(tk) ≤ Ik(α(t

−
k )) − dαk, k = 1, 2, . . . , q,

and {
β�(t) + p(t)βσ (t) ≥ f (t, βσ (t)) + rβ(t), t ∈ J, t �= tk,
�β(tk) ≥ Ik(β(t

−
k )) + dβk, k = 1, 2, . . . , q,

where 1 -μ(t)m(t) >0, Lk <1, ra(t), rb(t), dak, dbk are given by

rα(t) =

{
0, α(0) ≤ α(σ (T)),
m(t)σ (t)+1

σ (T) [α(0) − α(σ (T))], α(0) > α(σ (T)),
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dαk =

{
0, α(0) ≤ α(σ (T)),
Lktk
σ (T) [α(0) − α(σ (T))], α(0) > α(σ (T)),

rβ(t) =

{
0, β(0) ≥ β(σ (T)),
m(t)σ (t)+1

σ (T) [β(σ (T)) − β(0)], β(0) < β(σ (T)),

dβk =

{
0, β(0) ≥ β(σ (T)),
Lktk
σ (T) [β(σ (T)) − β(0)], β(0) < β(σ (T)),

that is, a(t) and b(t) are lower and upper solutions of PBV P (13), respectively;

(H2) f(t, x):T × R ® R is rd - continuous at the first variable and continuous at the

second variable such that

f (t, yσ (t)) − f (t, xσ (t)) ≥ [p(t) − m(t)](yσ (t) − xσ (t)),

for a(t) ≤ x(t) ≤ y(t) ≤ b(t);
(H3) Ik Î C(R, R) satisfies

Ik(y(tk)) − Ik(x(tk)) ≥ −Lk(y(tk) − x(tk))

for a(t) ≤ x(tk) ≤ y(tk) ≤ b(t), k = 1, 2,. ···, q, 0 ≤ Lk <1;

(H4) There exists m(t) ÎC(R, R) satisfying 1 -μ(t)m(t) >0 and

q∏
k=1

(1 − Lk)e�m(σ (T), 0) < 1,

∣∣∣∣ em(σ (T), 0)
em(σ (T), 0) − 1

∣∣∣∣
q∑

k=1

Lk < 1.

Then, there exist monotone sequences an(t) and bn(t) with a0 = a, b0 = b such that

lim
n→∞ αn(t) = y∗(t), lim

n→∞ βn(t) = y∗(t),

uniformly on J, and y*(t), y*(t) are the minimal and maximal solutions of PBV P (1.3)

such that y* ≤ y ≤ y*, where y is any solution of PBV P (1.3) satisfying a ≤ y ≤ b on J.

Proof. For any h Î [a, b], consider the PBVP (3.1) with h(t) = f(t, h s (t)) + [m(t) -p

(t)] hs (t). The condition (H4) and Lemma 3.1 guarantee that PBVP (3.1) has a unique

solution y(t). Define the operator A : [a, b] ® PC such that y(t) = Ah. Next, we show

that the operator A satisfies the two properties as follows:

(i) a ≤ Aa, Ab ≤ b;
(ii) A is a monotone nondecreasing function, i.e. for any h1, h2 Î [a, b],h1 ≤ h2

implies Ah1 ≤ Ah2.
To see (i), letting ȳ = α − α1, where a1 = Aa. Owing to the condition (H1) and (3.1),

we have

ȳ�(t) = α�(t) − α�
1 (t)

≤ f (t, ασ (t)) − rα(t) − p(t)ασ (t) − [−m(t)ασ
1 (t) + f (t, ασ (t)) + (m(t) − p(t))ασ (t)

]
= −rα(t) − m(t)[ασ (t) − ασ

1 (t)]

= −rȳ(t) − m(t)ȳσ (t),
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�ȳ(tk) = �α(tk) − �α1(tk)

≤ Ik(α(tk)) − dαk − [−Lkα1(tk) + Ik(α(tk)) + Lkα(tk)
]

= −dαk − Lk[α(tk) − α1(tk)]

= −dαk − Lkȳ(tk).

By virtue of Lemma 3.3, we achieve ȳ(t) ≤ 0 on J, i.e. a ≤ A a. Similarly, we can

show that Ab ≤ b.
To see (ii), let ȳ = y1 − y2, where y1 = Ah1, y2 = Ah2. Applying the condition (H2) and

(H3) together with (3.1) to obtain that

ȳ�(t) = y�1 (t) − y�2 (t)

= f (t, ησ
1 (t)) + (m(t) − p(t))ησ

1 (t) − m(t)yσ1 (t) − f (t, ησ
2 (t)) − (m(t) − p(t))ησ

2 (t)

+m(t)yσ2 (t)

≤ −m(t)[yσ1 (t) − yσ2 (t)] + f (t, ησ
1 (t)) − f (t, ησ

2 (t)) + (m(t) − p(t))(ησ
1 (t) − ησ

2 (t))

≤ −m(t)ȳσ (t),

�ȳ(tk) = �y1(tk) − �y2(tk)

= −Lky1(tk) + Ik(η1(tk)) + Lkη1(tk) − [−Lky2(tk) + Ik(η2(tk)) + Lkη2(tk)]

≤ −Lkȳ(tk) + Ik(η1(tk)) − Ik(η2(tk)) + Lk[η1(tk) − η2(tk)]

≤ −Lkȳ(tk).

The Lemma 3.3 yields that ȳ(t) ≤ 0 on J, i.e. Ah1 ≤ Ah2.
Now, define the sequences an+1 = Aan, bn+1 = Abn with a0 = a, b0 = b. Notice that

αn =

σ (T)∫
0

G(t, s)hn−1(s)�s +
∑

0<tk<σ (T)

[−Lkαn(tk) + Ik(αn−1(tk)) + Lkαn−1(tk)
]
,

βn =

σ (T)∫
0

G(t, s)hn−1(s)�s +
∑

0<tk<σ (T)

[−Lkβn(tk) + Ik(βn−1(tk)) + Lkβn−1(tk)
]
,

where

hn−1(t) = f (t, ασ
n−1(t)) + [m(t) − p(t)]ασ

n−1(t), t ∈ [0, σ (T)],

h̄n−1(t) = f (t, βσ
n−1(t)) + [m(t) − p(t)]βσ

n−1(t), t ∈ [0, σ (T)].

The two properties of operator A guarantee that the sequences an and bn satisfy

α = α0 ≤ α1 ≤ · · · ≤ αn ≤ · · · ≤ βn ≤ · · · ≤ β1 ≤ β0 = β .

Consequently, there exist y*(t) and y* (t) such that

lim
n→∞ αn(t) = y∗(t), and lim

n→∞ βn(t) = y∗(t),

uniformly on J. It is obviously seen that y*(t) and y*(t) satisfy PBVP (1.3).

Let y(t) be any solution of PBVP (1.3) such that y Î [a, b]. Assuming that there

exists a positive integer n such that an(t) ≤ y(t) ≤ bn(t), since A is a monotone nonde-

creasing operator, we obtain an+1(t) = Aan(t) ≤ Ay(t) = y(t), bn+1(t) = Abn(t) ≥ Ay(t) =

y(t), furthermore, it follows an+1(t) ≤ y(t) ≤ bn+1(t). In view of a0(t) ≤ y(t) ≤ b0(t),
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proceed inductively to obtain an(t) ≤ y(t) ≤ bn(t) for any positive integer n. Therefore y*
(t) ≤ y(t) ≤ y*(t) on J as n ® +∞.

The proof is completed. □
Remark 3.2. Observe that Theorem 3.1 generalize the Theorem 3.1 of Geng et al.

[6]. When p(t) = t, s (t) = t, t Î [0, T] ∩ T, t ≠ tk, k = 1, 2, ..., q, the PBVP (1.3)

becomes to the PBVP (1.2) which has been investigated in [6], moreover, we have the

following corollary if we set m(t) = M.

Corollary 3.1 ([6]). Suppose the following conditions :

(H5) The functions a, b are lower and upper solutions of PBV P (1.2) respectively,

such that a(t) ≤ b(t) for t Î J;

(H6) f (t, y):T × R ® R is rd - continuous at the first variable and continuous at the

second variable such that

f (t, y) − f (t, x) ≥ −M(y − x), for α(t) ≤ x(t) ≤ y(t) ≤ β(t);

(H7) Ik Î C(R, R) satisfies

Ik(y(tk)) − Ik(x(tk)) ≥ −Lk(y(tk) − x(tk))

for a(t) ≤ x(tk) ≤ y(tk) ≤ b(t), k = 1, 2, ..., q, 0 ≤ Lk <1;

(H8) There exists a constant M satisfying μ(t) < 1
M and 0 ≤ Lk <1 such that

1
1 − e−M(σ (T), 0)

q∑
k=1

Lk < 1,
q∏

k=1

(1 − Lk)e−M(σ (T), 0) < 1.

Then, there exist monotone sequences an(t) and bn(t) with a0 = a, b0 = b such that

lim
n→∞ αn(t) = y∗(t), lim

n→∞ βn(t) = y∗(t),

uniformly on J, and y*(t), y*(t) are the minimal and the maximal solutions of PBV P

(1.2), respectively, such that

α = α0 ≤ α1 ≤ α2 ≤ · · · ≤ αn ≤ y∗ ≤ y ≤ y∗ ≤ βn ≤ · · · ≤ β2 ≤ β1 ≤ β0 = β on J

where y is any solution of PBVP (1.2) satisfying a(t) ≤ y(t) ≤ b(t) on J.

4. Lower and upper solutions in the reversed order
In this section, we obtain the existence criterion of extremal solutions for PBVP (1.3)

under another case: a ≥ b, where a and b are lower and upper solutions of PBVP (1.3).

Assume h : T ® R is rd-continuous, we consider the following periodic boundary

value problem:⎧⎨
⎩
y�(t) − m(t)yσ (t) = h(t), t ∈ J\{tk}, k = 1, 2, . . . , q,
�y(tk) = Lky(tk) + Ik(η(tk)) − Lkη(tk), k = 1, 2, . . . , q,
y(0) = y(σ (T)).

(4:1)

Lemma 4.1. y Î PC is a solution of PBVP (4.1) if and only if

y(t) =

σ (T)∫
0

Ḡ(t, s)h(s)�s +
∑

0<tk<σ (T)

Ḡ(t, tk)[Lky(tk) + Ik(η(tk)) − Lkη(tk)], (4:2)
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where

Ḡ(t, s) =

{
e−m(s,t)e−m(σ (T),0)
e−m(σ (T),0)−1 , 0 ≤ s ≤ t ≤ σ (T),
e−m(s,t)

e−m(σ (T),0)−1 , 0 ≤ t < s ≤ σ (T).

Proof. The detailed proof is very similar to one given in Lemma 3.1. Here, we omit it

for brevity. □
Similarly, define an operator F̄:

F̄y(t) =

σ (T)∫
0

Ḡ(t, s)h(s)�s+
∑

0<tk<σ (T)

Ḡ(t, tk)
[
Lky(tk) + Ik(η(tk)) − Lkη(tk)

]
, t ∈ [0, σ (T)].

Lemma 4.2. Assume
q∏

k=1

(1 + Lk)e�−m(σ (T), 0) < 1, Lk > -1 and

y�(t) ≥ m(t)yσ (t) + r̄y(t),

�y(tk) ≥ Lky(tk) + d̄yk.

Then, y(t) ≤ 0 for all t Î J, where

r̄y(t) =

{
0, y(σ (T)) ≤ y(0),
m(t)[σ (T)−σ (t)]+1

σ (T) [y(σ (T)) − y(0)], y(σ (T)) > y(0),

and

d̄yk =

{
0, y(σ (T)) ≤ y(0),
Lk(σ (T)−tk)

σ (T) [y(σ (T)) − y(0)], y(σ (T)) > y(0).

Proof. Following the similar lines as in Lemma 3.3, we can prove this Lemma. The

detailed process is omitted here for brevity. □
Theorem 4.1. Assume that

(G1) There exist two functions : a, b Î PC ∩ C1(J\{t1, t2, ..., tq}, R), b(t) ≤ a(t) such
that {

α�(t) + p(t)ασ (t) ≤ f (t, ασ (t)) − r̄α(t), t ∈ J, t �= tk
�α(tk) ≤ Ik(α(t−k )) − d̄αk, k = 1, 2, . . . , q,

and {
β�(t) + p(t)βσ (t) ≥ f (t, βσ (t)) + r̄β(t), t ∈ J, t �= tk,
�β(tk) ≥ Ik(β(t−k )) + d̄βk, k = 1, 2, . . . , q,

where 1 -μ(t)m(t) >0, Lk >-1, r̄α(t), r̄β(t), d̄αk, d̄βkare given by

r̄α(t) =

{
0, α(0) ≤ α(σ (T)),
m(t)[σ (T)−σ (t)]+1

σ (T) [α(0) − α(σ (T))], α(0) > α(σ (T)),

d̄αk =

{
0, α(0) ≤ α(σ (T)),
Lk[σ (T)−tk]

σ (T) [α(0) − α(σ (T))], α(0) > α(σ (T)),
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r̄β(t) =

{
0, β(0) ≥ β(σ (T)),
m(t)[σ (T)−σ (t)]+1

σ (T) [β(σ (T)) − β(0)], β(0) < β(σ (T)),

d̄βk =

{
0, β(0) ≥ β(σ (T)),
Lk[σ (T)−tk]

σ (T) [β(σ (T)) − β(0)], β(0) < β(σ (T)),

that is, a(t) and b(t) are lower and upper solutions of PBV P (1.3), respectively;

(G2) f (t, x):T × R ® R is rd - continuous at the first variable and continuous at the

second variable such that

f (t, yσ (t)) − f (t, xσ (t)) ≤ [p(t) +m(t)](yσ (t) − xσ (t)),

for b(t) ≤ x(t) ≤ y(t) ≤ a(t);
(G3) Ik Î C(R, R) satisfies

Ik(y(tk)) − Ik(x(tk)) ≤ Lk(y(tk) − x(tk))

for b(t) ≤ x(tk) ≤ y(tk) ≤ a(t), k = 1, 2, ..., q, 0 ≤ Lk <1;

(G4) There exists m(t) satisfying 1 -μ(t)m(t) >0 and

q∏
k=1

(1 + Lk)e�−m(σ (T), 0) > 1,
1

|e−m(σ (T), 0) − 1|
q∑

k=1

Lk < 1.

Then, there exist monotone sequences an(t) and bn(t) with a0 = a, b0 = b such that

lim
n→∞ βn(t) = y∗(t), lim

n→∞ αn(t) = y∗(t),

uniformly on J, and y*(t), y*(t) are the minimal and maximal solutions of PBV P (1.3)

such that y*≤ y ≤ y*, where y is any solution of PBV P (1.3) satisfying b ≤ y ≤ a on J.

Proof. Setting h(t) = f(t, hs (t)) -[m(t) + p(t)] hs (t), t Î J, by using Lemma 4.1 and

Lemma 4.2 coupled with the monotone iterative technique, we can prove this result by

imitating the proof of Theorem 3.1. □

5. Examples
In this section, we provide two examples to illustrate the feasibility and applicability of

our obtained results. Under the case of lower and upper solutions with reverse-order,

the first one is devoted to the existence of extremal solutions to PBVP (5.1) on a time

scale defined as the real numbers set, and in the second one, the existence of extremal

solutions to PBVP (5.5) on a time scale defined as a sequence of discrete points union

a closed real interval is guaranteed.

Example 5.1. Let T = R and consider the following periodic boundary value problem⎧⎨
⎩
y�(t) = sin y(t) − 4y(t) + et, t ∈ [0, 13 ] ∩ T, t �= 1

5 ,
�y( 15) =

1
30 ,

y(0) = y( 13).
(5:1)

In this case, when x ≤ y, x, y Î R, we have

f (t, y) − f (t, x) = sin y − sin x − 4(y − x) ≤ 3(y − x), for all t ∈ [0,
1
3
], (5:2)

then, the condition (G2) is satisfied for m(t) = 3.
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Taking L1 = 1
3 to verify (G4), it is easy to check that,

1
1 − e−m(σ (T), 0)

m∑
k=1

Lk =
e

3(e − 1)
< 1,

m∏
k=1

(1 + Lk)e�−m(σ (T), 0) =
4
3
e > 1. (5:3)

It follows that the condition (G4) is valid.

Since Ik = 1
30, this together with L1 = 1

3 guarantees that the condition (G3) holds.

Let

α(t) = et − π

10
, β(t) =

{
0.46, t ∈ [0, 1

5 ],
0.5, t ∈ ( 15 ,

1
3 ].

Due to the fact that α(0) < α( 13), then r̄α = d̄α = 0.

f (t, α(t)) − α�(t) = sin(et − π

10
) + 4(et − π

10
),

min
t∈[0, 13 ]

f (t, α(t)) − α�(t) = sin(1 − π

10
) + 4(1 − π

10
) > 0.

(5:4)

Then, we have

α�(t) ≤ f (t, α(t)) − r̄α(t), t ∈ [0,
1
3
],

and

�α(
1
5
) = 0 ≤ 1

30
,

it follows that a is a lower solution of PBVP (5.1).

On the other hand, β(0) = 0.46 < 0.50 = β( 13), then r̄β = 0.24 − 0.36t, d̄β = 2
375. By

virtue of bΔ(t) = 0 for t ∈ [0, 13 ]\{ 15 }, it follows that

f (t, β(t)) + r̄β = sin(0.46) − 4 × 0.46 + et + 0.24 − 0.36t ≤ −0.00664913 < 0, t ∈ [0,
1
5
),

f (t, β(t)) + r̄β = sin(0.5) − 4 × 0.5 + et + 0.24 − 0.36t ≤ −0.00496204 < 0, t ∈ (
1
5
,
1
3
],

and

�β(
1
5
) = 0.04 ≥ 1

30
+

2
375

,

which implies that b is an upper solution of PBVP (5.1), and b ≤ a for t ∈ [0, 13 ]. As

a result, Theorem 4.1 guarantees there exist monotone sequences that approximate the

extremal solutions of PBVP (5.1).

Example 5.2. Consider the following periodic boundary value problem on time scale⎧⎨
⎩
x�(t) − 2xσ (t) = 3 sin xσ (t) + et, t ∈ [0, 1

3 ] ∩ T, t �= 1
5 ,

�y( 15 ) =
1
15 ,

y(0) = y( 13),
(5:5)

where T = { 15 − ( 15 )
N} ∪ [ 15 ,

1
3 ], N = {1, 2, ...}.

In this case, p(t) = -2, f(t, xs (t)) = 3 sin xs (t) + et, t ∈ [0, 13 ] ∩ T, t �= 1
5. Since

f (t, yσ (t)) − f (t, xσ (t)) = 3 sin yσ (t) − 3 sin xσ (t) ≤ 3(yσ (t) − xσ (t)) (5:6)
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for all x ≤ y, x, y Î R, t ∈ [0, 13 ], which shows the condition (G2) is satisfied for m(t)

= 3.

Since Ik = 1
15, then the condition (G3) holds naturally.

Taking L1 = 1
3 to calculate

1
1 − e−m(σ (T), 0)

m∑
k=1

Lk =
e

3(e − 1)
< 1,

m∏
k=1

(1 + Lk)e�−m(σ (T), 0) =
4
3
e > 1, (5:7)

which implies that condition (G4) is true.

Next, we show that

α(t) = 0, β(t) =
{−0.7, t ∈ [0, 1

5 ] ∩ T,
−0.6, t ∈ ( 15 ,

1
3 ] ∩ T

are a pair of lower and upper solutions of PBVP (5.5) which satisfy b ≤ a for all

t ∈ [0, 13 ] ∩ T.

we may see that α(0) < α( 13), thus r̄α(t) = d̄αk = 0. Note that aΔ(t) = 0 for

α�(t) = 0 < et = f (t, α(t)) − p(t)ασ (t) − r̄α(t),

α�(t) = 0 < et = f (t, α(t)) − p(t)ασ (t) − r̄α(t) and �α( 15) = 0 < 1
15, which yields a is a

lower solution of PBVP (5.5).

On the other hand, β(0) = −0.7 < −0.6 = β( 13) implies

r̄β(t) =

{
6−9t
10 , t ∈ [ 15 ,

1
3 ],

114
250 − 9t

50 , t ∈ { 15 − ( 15)
N}, d̄βk =

1
75

,

therefore

f (t, βσ (t)) + r̄β(t) − p(t)βσ (t) − β�(t) = 3 sin(−0.6) − 1.2 + et +
6 − 9t
10

≤ −1.19831 < 0, t ∈ (
1
5
,
1
3
],

f (t, βσ (t)) + r̄β(t) − p(t)βσ (t) − β�(t) = 3 sin(−0.7) − 1.4 + et +
114
250

− 9t
50

≤ −1.69125 < 0, t ∈ {1
5

− (
1
5
)N},

and

�β(
1
5
) =

1
10

≥ 1
15

+
1
75

.

Consequently, b is an upper solution of PBVP (5.5). In view of Theorem 4.1, there

exist monotone sequences that approximate the extremal solutions of PBVP (5.5).
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