661 research outputs found

    A Double-Voltage-Controlled Effective Thermal Conductivity Model of Graphene for Thermoelectric Cooling

    Full text link
    © 1963-2012 IEEE. Graphene provides a new opportunity for thermoelectric study based on its unique heat transfer behavior controllable by a gate voltage. In this paper, an effective thermal conductivity model of graphene for thermoelectric cooling is proposed. The model is based on a double-voltage-control mechanism. According to the law of Fourier heat conduction, an effective thermal conductivity model of the proposed thermoelectric cooling device is derived taking a tunable external voltage into account. Then, a gate voltage is used which can change graphene's thermoelectric characteristics. To verify the correctness and effectiveness of the proposed model, a circuit simulation model using HSPICE is built based on the thermoelectric duality. The simulation results from HSPICE and the calculated results from the mathematic model show good agreements with each other. This paper provides a novel precisely controlling method for thermoelectric cooling

    Vehicles for atopic dermatitis therapies: more than just a placebo

    Get PDF
    A topical vehicle is a ‘carrier system’ for an active pharmaceutical (or cosmetic) substance, referred to hereafter as the drug, but a vehicle may also be used on its own as an emollient to ameliorate dry skin. It is well established that the vehicle plays an important role in determining the bioavailability of a given drug at its ultimate target within the skin. Yet in the treatment of atopic eczema/dermatitis (AD), wherein the structure and function of the skin's outer barrier play a pivotal role in the development and course of the condition, the interaction of the vehicle with this barrier carries a particular importance. It is now clear that the often-considered inert excipients of a vehicle bring about changes within the skin at the molecular level that promote barrier restoration and enhance innate immune defenses with therapeutic value to AD patients. Moreover, the vehicle control in randomized controlled trials (RCTs) increasingly displays significant efficacy. In light of this, we consider the implications of vehicle design in relation to AD pathophysiology and the role vehicles play as controls in RCTs of new drug treatments for this condition

    Heparan Sulfate Proteoglycans Mediate Interstitial Flow Mechanotransduction Regulating MMP-13 Expression and Cell Motility via FAK-ERK in 3D Collagen

    Get PDF
    Interstitial flow directly affects cells that reside in tissues and regulates tissue physiology and pathology by modulating important cellular processes including proliferation, differentiation, and migration. However, the structures that cells utilize to sense interstitial flow in a 3-dimensional (3D) environment have not yet been elucidated. Previously, we have shown that interstitial flow upregulates matrix metalloproteinase (MMP) expression in rat vascular smooth muscle cells (SMCs) and fibroblasts/myofibroblasts via activation of an ERK1/2-c-Jun pathway, which in turn promotes cell migration in collagen. Herein, we focused on uncovering the flow-induced mechanotransduction mechanism in 3D.Cleavage of rat vascular SMC surface glycocalyx heparan sulfate (HS) chains from proteoglycan (PG) core proteins by heparinase or disruption of HS biosynthesis by silencing N-deacetylase/N-sulfotransferase 1 (NDST1) suppressed interstitial flow-induced ERK1/2 activation, interstitial collagenase (MMP-13) expression, and SMC motility in 3D collagen. Inhibition or knockdown of focal adhesion kinase (FAK) also attenuated or blocked flow-induced ERK1/2 activation, MMP-13 expression, and cell motility. Interstitial flow induced FAK phosphorylation at Tyr925, and this activation was blocked when heparan sulfate proteoglycans (HSPGs) were disrupted. These data suggest that HSPGs mediate interstitial flow-induced mechanotransduction through FAK-ERK. In addition, we show that integrins are crucial for mechanotransduction through HSPGs as they mediate cell spreading and maintain cytoskeletal rigidity.We propose a conceptual mechanotransduction model wherein cell surface glycocalyx HSPGs, in the presence of integrin-mediated cell-matrix adhesions and cytoskeleton organization, sense interstitial flow and activate the FAK-ERK signaling axis, leading to upregulation of MMP expression and cell motility in 3D. This is the first study to describe a flow-induced mechanotransduction mechanism via HSPG-mediated FAK activation in 3D. This study will be of interest in understanding the flow-related mechanobiology in vascular lesion formation, tissue morphogenesis, cancer cell metastasis, and stem cell differentiation in 3D, and also has implications in tissue engineering

    Shear Stress Modulation of Smooth Muscle Cell Marker Genes in 2-D and 3-D Depends on Mechanotransduction by Heparan Sulfate Proteoglycans and ERK1/2

    Get PDF
    During vascular injury, vascular smooth muscle cells (SMCs) and fibroblasts/myofibroblasts (FBs/MFBs) are exposed to altered luminal blood flow or transmural interstitial flow. We investigate the effects of these two types of fluid flows on the phenotypes of SMCs and MFBs and the underlying mechanotransduction mechanisms.Exposure to 8 dyn/cm(2) laminar flow shear stress (2-dimensional, 2-D) for 15 h significantly reduced expression of alpha-smooth muscle actin (alpha-SMA), smooth muscle protein 22 (SM22), SM myosin heavy chain (SM-MHC), smoothelin, and calponin. Cells suspended in collagen gels were exposed to interstitial flow (1 cmH(2)O, approximately 0.05 dyn/cm(2), 3-D), and after 6 h of exposure, expression of SM-MHC, smoothelin, and calponin were significantly reduced, while expression of alpha-SMA and SM22 were markedly enhanced. PD98059 (an ERK1/2 inhibitor) and heparinase III (an enzyme to cleave heparan sulfate) significantly blocked the effects of laminar flow on gene expression, and also reversed the effects of interstitial flow on SM-MHC, smoothelin, and calponin, but enhanced interstitial flow-induced expression of alpha-SMA and SM22. SMCs and MFBs have similar responses to fluid flow. Silencing ERK1/2 completely blocked the effects of both laminar flow and interstitial flow on SMC marker gene expression. Western blotting showed that both types of flows induced ERK1/2 activation that was inhibited by disruption of heparan sulfate proteoglycans (HSPGs).The results suggest that HSPG-mediated ERK1/2 activation is an important mechanotransduction pathway modulating SMC marker gene expression when SMCs and MFBs are exposed to flow. Fluid flow may be involved in vascular remodeling and lesion formation by affecting phenotypes of vascular wall cells. This study has implications in understanding the flow-related mechanobiology in vascular lesion formation, tumor cell invasion, and stem cell differentiation

    The Protein Partners of GTP Cyclohydrolase I in Rat Organs

    Get PDF
    GTP cyclohydrolase I (GCH1) is the rate-limiting enzyme for tetrahydrobiopterin biosynthesis and has been shown to be a promising therapeutic target in ischemic heart disease, hypertension, atherosclerosis and diabetes. The endogenous GCH1-interacting partners have not been identified. Here, we determined endogenous GCH1-interacting proteins in rat.A pulldown and proteomics approach were used to identify GCH1 interacting proteins in rat liver, brain, heart and kidney. We demonstrated that GCH1 interacts with at least 17 proteins including GTP cyclohydrolase I feedback regulatory protein (GFRP) in rat liver by affinity purification followed by proteomics and validated six protein partners in liver, brain, heart and kidney by immunoblotting. GCH1 interacts with GFRP and very long-chain specific acyl-CoA dehydrogenase in the liver, tubulin beta-2A chain in the liver and brain, DnaJ homolog subfamily A member 1 and fatty aldehyde dehydrogenase in the liver, heart and kidney and eukaryotic translation initiation factor 3 subunit I (EIF3I) in all organs tested. Furthermore, GCH1 associates with mitochondrial proteins and GCH1 itself locates in mitochondria.GCH1 interacts with proteins in an organ dependant manner and EIF3I might be a general regulator of GCH1. Our finding indicates GCH1 might have broader functions beyond tetrahydrobiopterin biosynthesis

    Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at √s=8TeV

    Get PDF
    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fb−1of data collected in proton–proton collisions at √s=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV

    The Changes in China's Forests: An Analysis Using the Forest Identity

    Get PDF
    Changes in forest carbon stocks are a determinant of the regional carbon budget. In the past several decades, China has experienced a pronounced increase in forest area and density. However, few comprehensive analyses have been conducted. In this study, we employed the Forest Identity concept to evaluate the changing status of China's forests over the past three decades, using national forest inventory data of five periods (1977–1981, 1984–1988, 1989–1993, 1994–1998, and 1999–2003). The results showed that forest area and growing stock density increased by 0.51% and 0.44% annually over the past three decades, while the conversion ratio of forest biomass to growing stock declined by 0.10% annually. These developments resulted in a net annual increase of 0.85% in forest carbon sequestration, which is equivalent to a net biomass carbon uptake of 43.8 Tg per year (1 Tg = 1012 g). This increase can be attributed to the national reforestation/afforestation programs, environmentally enhanced forest growth and economic development as indicated by the average gross domestic product
    corecore