286 research outputs found

    Comments on operators with large spin

    Full text link
    We consider high spin operators. We give a general argument for the logarithmic scaling of their anomalous dimensions which is based on the symmetries of the problem. By an analytic continuation we can also see the origin of the double logarithmic divergence in the Sudakov factor. We show that the cusp anomalous dimension is the energy density for a flux configuration of the gauge theory on AdS3×S1AdS_3 \times S^1. We then focus on operators in N=4{\cal N}=4 super Yang Mills which carry large spin and SO(6) charge and show that in a particular limit their properties are described in terms of a bosonic O(6) sigma model. This can be used to make certain all loop computations in the string theory.Comment: 33 pages, 1 figure,v2:reference to more recent work added, minor correction

    Operator with large spin and spinning D3-brane

    Full text link
    We consider the conformal dimension of an operator with large spin, using a spinning D3-brane with electric flux in AdS_5 x S^5 instead of spinning fundamental string. This spinning D3-brane solution seems to correspond to an operator made by taking trace in a large symmetric representation. The conformal dimension, the spin and the R-charge show a scaling relation in a certain region of parameters. In the small string charge limit, the result is consistent with the fundamental string picture. There is a phase transition when the fundamental string charge become larger than a certain critical value; there is no stable D3-brane solution above the critical value.Comment: 16 pages, 4 figures. v2: typos corrected, references added, series expansion of anomalous dimension added. v3: a reference added, comment on calculation in gauge theor

    Supersymmetric Wilson loops on S^3

    Full text link
    This paper studies in great detail a family of supersymmetric Wilson loop operators in N=4 supersymmetric Yang-Mills theory we have recently found. For a generic curve on an S^3 in space-time the loops preserve two supercharges but we will also study special cases which preserve 4, 8 and 16 supercharges. For certain loops we find the string theory dual explicitly and for the general case we show that string solutions satisfy a first order differential equation. This equation expresses the fact that the strings are pseudo-holomorphic with respect to a novel almost complex structure we construct on AdS_4 x S^2. We then discuss loops restricted to S^2 and provide evidence that they can be calculated in terms of similar observables in purely bosonic YM in two dimensions on the sphere.Comment: Latex, 84 pages, 4 figures. v2: minor changes, references added; to appear in JHE

    Extended Holomorphic Anomaly in Gauge Theory

    Full text link
    The partition function of an N=2 gauge theory in the Omega-background satisfies, for generic value of the parameter beta=-eps_1/eps_2, the, in general extended, but otherwise beta-independent, holomorphic anomaly equation of special geometry. Modularity together with the (beta-dependent) gap structure at the various singular loci in the moduli space completely fixes the holomorphic ambiguity, also when the extension is non-trivial. In some cases, the theory at the orbifold radius, corresponding to beta=2, can be identified with an "orientifold" of the theory at beta=1. The various connections give hints for embedding the structure into the topological string.Comment: 25 page

    Particle Production and Gravitino Abundance after Inflation

    Full text link
    Thermal history after inflation is studied in a chaotic inflation model with supersymmetric couplings of the inflaton to matter fields. Time evolution equation is solved in a formalism that incorporates both the back reaction of particle production and the cosmological expansion. The effect of the parametric resonance gives rise to a rapid initial phase of the inflaton decay followed by a slow stage of the Born term decay. Thermalization takes place immediately after the first explosive stage for a medium strength of the coupling among created particles. As an application we calculate time evolution of the gravitino abundance that is produced by ordinary particles directly created from the inflaton decay, which typically results in much more enhanced yield than what a naive estimate based on the Born term would suggest.Comment: 23 pages + 13 figure

    Integrable Open Spin Chains in Defect Conformal Field Theory

    Full text link
    We demonstrate that the one-loop dilatation generator for the scalar sector of a certain perturbation of N=4 Super Yang-Mills with fundamentals is the Hamiltonian of an integrable spin chain with open boundary conditions. The theory is a supersymmetric defect conformal field theory (dCFT) with the fundamentals in hypermultiplets confined to a codimension one defect. We obtain a K-matrix satisfying a suitably generalized form of the boundary Yang-Baxter equation, study the Bethe ansatz equations and demonstrate how Dirichlet and Neumann boundary conditions arise in field theory, and match to existing results in the plane wave limit.Comment: 26 pages, LaTeX. v2: references added, typos correcte

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Non-Equilibrium Bose-Einstein Condensates, Dynamical Scaling and Symmetric Evolution in large N Phi^4 theory

    Get PDF
    We analyze the non-equilibrium dynamics of the O(N) Phi^4 model in the large N limit and for states of large energy density. The dynamics is dramatically different when the energy density is above the top of the tree level potential V_0 than when it is below it.When the energy density is below V_0, we find that non-perturbative particle production through spinodal instabilities provides a dynamical mechanism for the Maxwell construction. The asymptotic values of the order parameter only depend on the initial energy density and all values between the minima of the tree level potential are available, the asymptotic dynamical `effective potential' is flat between the minima. When the energy density is larger than V_0, the evolution samples ergodically the broken symmetry states, as a consequence of non-perturbative particle production via parametric amplification. Furthermore, we examine the quantum dynamics of phase ordering into the broken symmetry phase and find novel scaling behavior of the correlation function. There is a crossover in the dynamical correlation length at a time scale t_s \sim \ln(1/lambda). For t < t_s the dynamical correlation length \xi(t) \propto \sqrt{t} and the evolution is dominated by spinodal instabilities, whereas for t>t_s the evolution is non-linear and dominated by the onset of non-equilibrium Bose-Einstein condensation of long-wavelength Goldstone bosons.In this regime a true scaling solution emerges with a non- perturbative anomalous scaling length dimension z=1/2 and a dynamical correlation length \xi(t) \propto (t-t_s). The equal time correlation function in this scaling regime vanishes for r>2(t-t_s) by causality. For t > t_s the equal time correlation function falls of as 1/r. A semiclassical but stochastic description emerges for time scales t > t_s.Comment: Minor improvements, to appear in Phys. Rev. D. Latex file, 48 pages, 12 .ps figure

    Neural cytoskeleton capabilities for learning and memory

    Get PDF
    This paper proposes a physical model involving the key structures within the neural cytoskeleton as major players in molecular-level processing of information required for learning and memory storage. In particular, actin filaments and microtubules are macromolecules having highly charged surfaces that enable them to conduct electric signals. The biophysical properties of these filaments relevant to the conduction of ionic current include a condensation of counterions on the filament surface and a nonlinear complex physical structure conducive to the generation of modulated waves. Cytoskeletal filaments are often directly connected with both ionotropic and metabotropic types of membrane-embedded receptors, thereby linking synaptic inputs to intracellular functions. Possible roles for cable-like, conductive filaments in neurons include intracellular information processing, regulating developmental plasticity, and mediating transport. The cytoskeletal proteins form a complex network capable of emergent information processing, and they stand to intervene between inputs to and outputs from neurons. In this manner, the cytoskeletal matrix is proposed to work with neuronal membrane and its intrinsic components (e.g., ion channels, scaffolding proteins, and adaptor proteins), especially at sites of synaptic contacts and spines. An information processing model based on cytoskeletal networks is proposed that may underlie certain types of learning and memory
    corecore