4,391 research outputs found

    Transience of hot dust around sun-like stars

    Get PDF
    There is currently debate over whether the dust content of planetary systems is stochastically regenerated or originates in planetesimal belts evolving in steady state. In this paper a simple model for the steady state evolution of debris disks due to collisions is developed and confronted with the properties of the emerging population of 7 sun-like stars that have hot dust <10AU. The model shows there is a maximum possible disk mass at a given age, since more massive primordial disks process their mass faster. The corresponding maximum dust luminosity is f_max=0.00016r^(7/3)/t_age. The majority (4/7) of the hot disks exceed this limit by >1000 and so cannot be the products of massive asteroid belts, rather the following systems must be undergoing transient events characterized by an unusually high dust content near the star: eta Corvi, HD69830, HD72905 and BD+20307. It is also shown that the hot dust cannot originate in a recent collision in an asteroid belt, since there is also a maximum rate at which collisions of sufficient magnitude to reproduce a given dust luminosity can occur. Further it is shown that the planetesimal belt feeding the dust in these systems must be located further from the star than the dust, typically at >2AU. Other notable properties of the 4 hot dust systems are: two also have a planetesimal belt at >10AU (eta Corvi and HD72905); one has 3 Neptune mass planets at <1AU (HD69830); all exhibit strong silicate features in the mid-IR. We consider the most likely origin for the dust in these systems to be a dynamical instability which scattered planetesimals inwards from a more distant planetesimal belt in an event akin to the Late Heavy Bombardment in our own system, the dust being released from such planetesimals in collisions and possibly also sublimation.Comment: 16 pages, accepted by ApJ, removed HD128400 as hot dust candidat

    Debris Disks: Probing Planet Formation

    Full text link
    Debris disks are the dust disks found around ~20% of nearby main sequence stars in far-IR surveys. They can be considered as descendants of protoplanetary disks or components of planetary systems, providing valuable information on circumstellar disk evolution and the outcome of planet formation. The debris disk population can be explained by the steady collisional erosion of planetesimal belts; population models constrain where (10-100au) and in what quantity (>1Mearth) planetesimals (>10km in size) typically form in protoplanetary disks. Gas is now seen long into the debris disk phase. Some of this is secondary implying planetesimals have a Solar System comet-like composition, but some systems may retain primordial gas. Ongoing planet formation processes are invoked for some debris disks, such as the continued growth of dwarf planets in an unstirred disk, or the growth of terrestrial planets through giant impacts. Planets imprint structure on debris disks in many ways; images of gaps, clumps, warps, eccentricities and other disk asymmetries, are readily explained by planets at >>5au. Hot dust in the region planets are commonly found (<5au) is seen for a growing number of stars. This dust usually originates in an outer belt (e.g., from exocomets), although an asteroid belt or recent collision is sometimes inferred.Comment: Invited review, accepted for publication in the 'Handbook of Exoplanets', eds. H.J. Deeg and J.A. Belmonte, Springer (2018

    A peculiar class of debris disks from Herschel/DUNES - A steep fall off in the far infrared

    Get PDF
    Aims. We present photometric data of debris disks around HIP 103389 (HD 199260), HIP 107350 (HN Peg, HD206860), and HIP 114948 (HD 219482), obtained in the context of our Herschel Open Time Key Program DUNES (DUst around NEarby Stars). Methods. We used Herschel/PACS to detect the thermal emission of the three debris disks with a 3 sigma sensitivity of a few mJy at 100 um and 160 um. In addition, we obtained Herschel/PACS photometric data at 70 um for HIP 103389. Two different approaches are applied to reduce the Herschel data to investigate the impact of data reduction on the photometry. We fit analytical models to the available spectral energy distribution (SED) data. Results. The SEDs of the three disks potentially exhibit an unusually steep decrease at wavelengths > 70 um. We investigate the significance of the peculiar shape of these SEDs and the impact on models of the disks provided it is real. Our modeling reveals that such a steep decrease of the SEDs in the long wavelength regime is inconsistent with a power-law exponent of the grain size distribution -3.5 expected from a standard equilibrium collisional cascade. In contrast, a very distinct range of grain sizes is implied to dominate the thermal emission of such disks. However, we demonstrate that the understanding of the data of faint sources obtained with Herschel is still incomplete and that the significance of our results depends on the version of the data reduction pipeline used. Conclusions. A new mechanism to produce the dust in the presented debris disks, deviations from the conditions required for a standard equilibrium collisional cascade (grain size exponent of -3.5), and/or significantly different dust properties would be necessary to explain the potentially steep SED shape of the three debris disks presented. (abridged)Comment: 14 pages, 4 figures, accepted by A&

    Recurring outbursts of the supernova impostor AT 2016blu in NGC 4559

    Full text link
    We present the first photometric analysis of the supernova (SN) impostor AT 2016blu in NGC 4559. This transient was discovered by the Lick Observatory Supernova Search in 2012 and has continued its outbursts since then. Optical and infrared photometry of AT 2016blu reveals at least 19 outbursts in 2012-2022. Similar photometry from 1999-2009 shows no outbursts, indicating that the star was relatively stable in the decade before discovery. Archival {\it Hubble Space Telescope} observations suggest that the progenitor had a minimum initial mass of M>=33M >= 33 M_{\odot} and a luminosity of L>=105.7L >= 10^{5.7} L_{\odot}. AT 2016blu's outbursts show irregular variability with multiple closely spaced peaks having typical amplitudes of 1-2 mag and durations of 1-4 weeks. While individual outbursts have irregular light curves, concentrations of these peaks recur with a period of 113±2\sim 113 \pm 2 d. Based on this period, we predict times for upcoming outbursts in 2023 and 2024. AT 2016blu shares similarities with SN 2000ch in NGC 3432, where outbursts may arise from periastron encounters in an eccentric binary containing a luminous blue variable (LBV). We propose that AT 2016blu's outbursts are also driven by interactions that intensify around periastron in an eccentric system. Intrinsic variability of the LBV-like primary star may cause different intensity and duration of binary interaction at each periastron passage. AT 2016blu also resembles the periastron encounters of η\eta Carinae prior to its Great Eruption and the erratic pre-SN eruptions of SN 2009ip. This similarity and the onset of eruptions in the past decade hint that AT 2016blu may also be headed for a catastrophe, making it a target of great interest.Comment: 18 pages, 14 figures, 6 tables, MNRAS Accepte

    Can gas in young debris disks be constrained by their radial brightness profiles?

    Full text link
    Disks around young stars are known to evolve from optically thick, gas-dominated protoplanetary disks to optically thin, almost gas-free debris disks. It is thought that the primordial gas is largely removed at ages of ~10 Myr, but it is difficult to discern the true gas densities from gas observations. This suggests using observations of dust: it has been argued that gas, if present with higher densities, would lead to flatter radial profiles of the dust density and surface brightness than those actually observed. However, here we show that these profiles are surprisingly insensitive to variation of the parameters of a central star, location of the dust-producing planetesimal belt, dustiness of the disk and - most importantly - the parameters of the ambient gas. This result holds for a wide range of gas densities (three orders of magnitude), for different radial distributions of the gas temperature, and different gas compositions. The brightness profile slopes of -3...-4 we find are the same that were theoretically found for gas-free debris disks, and they are the same as actually retrieved from observations of many debris disks. Our specific results for three young (10-30 Myr old), spatially resolved, edge-on debris disks (beta Pic, HD 32297, and AU Mic) show that the observed radial profiles of the surface brightness do not pose any stringent constraints on the gas component of the disk. We cannot exclude that outer parts of the systems may have retained substantial amounts of primordial gas which is not evident in the gas observations (e.g. as much as 50 Earth masses for beta Pic). However, the possibility that gas, most likely secondary, is only present in little to moderate amounts, as deduced from gas detections (e.g. ~0.05 Earth masses in the beta Pic disk), remains open, too.Comment: Accepted for publication in Astronomy and Astrophysic

    The Carnegie Supernova Project: First Photometry Data Release of Low-Redshift Type Ia Supernovae

    Get PDF
    The Carnegie Supernova Project (CSP) is a five-year survey being carried out at the Las Campanas Observatory to obtain high-quality light curves of ~100 low-redshift Type Ia supernovae in a well-defined photometric system. Here we present the first release of photometric data that contains the optical light curves of 35 Type Ia supernovae, and near-infrared light curves for a subset of 25 events. The data comprise 5559 optical (ugriBV) and 1043 near-infrared (YJHKs) data points in the natural system of the Swope telescope. Twenty-eight supernovae have pre-maximum data, and for 15 of these, the observations begin at least 5 days before B maximum. This is one of the most accurate datasets of low-redshift Type Ia supernovae published to date. When completed, the CSP dataset will constitute a fundamental reference for precise determinations of cosmological parameters, and serve as a rich resource for comparison with models of Type Ia supernovae.Comment: 93 pages, 8 figures, accepted for publication in A

    Long-wavelength observations of debris discs around sun-like stars

    Get PDF
    [Abridged] We present two deep surveys of circumstellar discs around solar-type stars at different ages carried out at 350 micron with the CSO and at 1.2 mm with the IRAM 30-m telescope. The aim of this study is to understand the evolution timescale of circumstellar debris discs, and the physical mechanisms responsible for such evolution around solar-type stars. In addition, we perform a detailed characterisation of the detected debris discs. Theoretically, the mass of the disc is expected to decrease with time. In order to test this hypothesis, we performed the generalised Kendall's tau correlation and three different two-sample tests. A characterisation of the detected debris discs has been obtained by computing the collision and Poynting-Robertson timescales and by modelling the spectral energy distribution. The Kendall's tau correlation yields a probability of 76% that the mass of debris discs and their age are correlated. Similarly, the three two-sample tests give a probability between 70 and 83% that younger and older debris systems belong to different parent populations in terms of dust mass. We detected submillimetre/millimetre emission from six debris discs, enabling a detailed SED modelling. Our results on the correlation and evolution of dust mass as a function of age are conditioned by the sensitivity limit of our survey. Deeper millimetre observations are needed to confirm the evolution of debris material around solar-like stars. In the case of the detected discs, the comparison between collision and Poynting-Robertson timescales supports the hypothesis that these discs are collision dominated. All detected debris disc systems show the inner part evacuated from small micron-sized grains.Comment: Accepted by A&

    CITES, wild plants, and opportunities for crime

    Get PDF
    The illegal trade in endangered plants damages both the environment and local communities by threatening and destroying numerous species and important natural resources. There is very little research which systematically addresses this issue by identifying specific opportunities for crime. This article presents the results of an interdisciplinary study which brings together criminological and conservation science expertise to identify criminal opportunities in the illegal wild plant trade and suggest strategies in order to prevent and mitigate the problem. Methodologically, the study adapts a crime proofing of legislation approach to the UN Convention on the International Trade in Endangered Species of Wild Fauna and Flora and is based on documentary and interview data. Situational crime prevention is used as a framework to provide points for effective intervention

    Precise measurement of the top quark mass in the dilepton channel at D0

    Get PDF
    We measure the top quark mass (mt) in ppbar collisions at a center of mass energy of 1.96 TeV using dilepton ttbar->W+bW-bbar->l+nubl-nubarbbar events, where l denotes an electron, a muon, or a tau that decays leptonically. The data correspond to an integrated luminosity of 5.4 fb-1 collected with the D0 detector at the Fermilab Tevatron Collider. We obtain mt = 174.0 +- 1.8(stat) +- 2.4(syst) GeV, which is in agreement with the current world average mt = 173.3 +- 1.1 GeV. This is currently the most precise measurement of mt in the dilepton channel.Comment: 7 pages, 4 figure
    corecore