25 research outputs found

    RENEB intercomparisons applying the conventional Dicentric Chromosome Assay (DCA)

    Get PDF
    Purpose: Two quality controlled inter-laboratory exercises were organized within the EU project ‘Realizing the European Network of Biodosimetry (RENEB)’ to further optimize the dicentric chromosome assay (DCA) and to identify needs for training and harmonization activities within the RENEB network. Materials and methods: The general study design included blood shipment, sample processing, analysis of chromosome aberrations and radiation dose assessment. After manual scoring of dicentric chromosomes in different cell numbers dose estimations and corresponding 95% confidence intervals were submitted by the participants. Results: The shipment of blood samples to the partners in the European Community (EU) were performed successfully. Outside the EU unacceptable delays occurred. The results of the dose estimation demonstrate a very successful classification of the blood samples in medically relevant groups. In comparison to the 1st exercise the 2nd intercomparison showed an improvement in the accuracy of dose estimations especially for the high dose point. Conclusions: In case of a large-scale radiological incident, the pooling of ressources by networks can enhance the rapid classification of individuals in medically relevant treatment groups based on the DCA. The performance of the RENEB network as a whole has clearly benefited from harmonization processes and specific training activities for the network partners

    Global, regional, and national progress towards Sustainable Development Goal 3.2 for neonatal and child health: all-cause and cause-specific mortality findings from the Global Burden of Disease Study 2019

    Get PDF
    Background Sustainable Development Goal 3.2 has targeted elimination of preventable child mortality, reduction of neonatal death to less than 12 per 1000 livebirths, and reduction of death of children younger than 5 years to less than 25 per 1000 livebirths, for each country by 2030. To understand current rates, recent trends, and potential trajectories of child mortality for the next decade, we present the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 findings for all-cause mortality and cause-specific mortality in children younger than 5 years of age, with multiple scenarios for child mortality in 2030 that include the consideration of potential effects of COVID-19, and a novel framework for quantifying optimal child survival. Methods We completed all-cause mortality and cause-specific mortality analyses from 204 countries and territories for detailed age groups separately, with aggregated mortality probabilities per 1000 livebirths computed for neonatal mortality rate (NMR) and under-5 mortality rate (USMR). Scenarios for 2030 represent different potential trajectories, notably including potential effects of the COVID-19 pandemic and the potential impact of improvements preferentially targeting neonatal survival. Optimal child survival metrics were developed by age, sex, and cause of death across all GBD location-years. The first metric is a global optimum and is based on the lowest observed mortality, and the second is a survival potential frontier that is based on stochastic frontier analysis of observed mortality and Healthcare Access and Quality Index. Findings Global U5MR decreased from 71.2 deaths per 1000 livebirths (95% uncertainty interval WI] 68.3-74-0) in 2000 to 37.1 (33.2-41.7) in 2019 while global NMR correspondingly declined more slowly from 28.0 deaths per 1000 live births (26.8-29-5) in 2000 to 17.9 (16.3-19-8) in 2019. In 2019,136 (67%) of 204 countries had a USMR at or below the SDG 3.2 threshold and 133 (65%) had an NMR at or below the SDG 3.2 threshold, and the reference scenario suggests that by 2030,154 (75%) of all countries could meet the U5MR targets, and 139 (68%) could meet the NMR targets. Deaths of children younger than 5 years totalled 9.65 million (95% UI 9.05-10.30) in 2000 and 5.05 million (4.27-6.02) in 2019, with the neonatal fraction of these deaths increasing from 39% (3.76 million 95% UI 3.53-4.021) in 2000 to 48% (2.42 million; 2.06-2.86) in 2019. NMR and U5MR were generally higher in males than in females, although there was no statistically significant difference at the global level. Neonatal disorders remained the leading cause of death in children younger than 5 years in 2019, followed by lower respiratory infections, diarrhoeal diseases, congenital birth defects, and malaria. The global optimum analysis suggests NMR could be reduced to as low as 0.80 (95% UI 0.71-0.86) deaths per 1000 livebirths and U5MR to 1.44 (95% UI 1-27-1.58) deaths per 1000 livebirths, and in 2019, there were as many as 1.87 million (95% UI 1-35-2.58; 37% 95% UI 32-43]) of 5.05 million more deaths of children younger than 5 years than the survival potential frontier. Interpretation Global child mortality declined by almost half between 2000 and 2019, but progress remains slower in neonates and 65 (32%) of 204 countries, mostly in sub-Saharan Africa and south Asia, are not on track to meet either SDG 3.2 target by 2030. Focused improvements in perinatal and newborn care, continued and expanded delivery of essential interventions such as vaccination and infection prevention, an enhanced focus on equity, continued focus on poverty reduction and education, and investment in strengthening health systems across the development spectrum have the potential to substantially improve USMR. Given the widespread effects of COVID-19, considerable effort will be required to maintain and accelerate progress. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd

    Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017.

    Get PDF
    BACKGROUND: Global development goals increasingly rely on country-specific estimates for benchmarking a nation's progress. To meet this need, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 estimated global, regional, national, and, for selected locations, subnational cause-specific mortality beginning in the year 1980. Here we report an update to that study, making use of newly available data and improved methods. GBD 2017 provides a comprehensive assessment of cause-specific mortality for 282 causes in 195 countries and territories from 1980 to 2017. METHODS: The causes of death database is composed of vital registration (VR), verbal autopsy (VA), registry, survey, police, and surveillance data. GBD 2017 added ten VA studies, 127 country-years of VR data, 502 cancer-registry country-years, and an additional surveillance country-year. Expansions of the GBD cause of death hierarchy resulted in 18 additional causes estimated for GBD 2017. Newly available data led to subnational estimates for five additional countries-Ethiopia, Iran, New Zealand, Norway, and Russia. Deaths assigned International Classification of Diseases (ICD) codes for non-specific, implausible, or intermediate causes of death were reassigned to underlying causes by redistribution algorithms that were incorporated into uncertainty estimation. We used statistical modelling tools developed for GBD, including the Cause of Death Ensemble model (CODEm), to generate cause fractions and cause-specific death rates for each location, year, age, and sex. Instead of using UN estimates as in previous versions, GBD 2017 independently estimated population size and fertility rate for all locations. Years of life lost (YLLs) were then calculated as the sum of each death multiplied by the standard life expectancy at each age. All rates reported here are age-standardised

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    A case-control study on asthma and obese patients: Influence of lifestyle patterns, serum trace elements, heavy metals, and total antioxidants

    No full text
    Background and aim: Asthma is a chronic airway hyperresponsiveness disorder and Obese people have greater rates of asthma incidence and prevalence. Obesity, a complex condition, can cause nutritional metabolic problems that change trace elements and minerals. Trace element and antioxidant levels affect asthma aetiology. In this study, we aim to determine the serum levels of trace elements Zn, Fe, Cu, Mg, Co, Ni, Pb, Cd, and Cr, total antioxidants (TAS), and lifestyle that determine specific clinical conditions in asthma and obesity patients from Vellore City (Tamil Nadu, India). Methods: A case-control study to determine the level of the serum trace elements with 838 subjects (n = 242 asthma patients, n = 140 asthmatic obese, n = 185 obese patients, and n = 271 controls) between the ages of 20 and 60 years was carried out. Asthma was diagnosed based on the clinical examination and pulmonary function tests. Trace element levels were determined by atomic absorption spectrophotometry (AAS) in serum, and a DPPH-free radical scavenging assay was used to determine the total antioxidant capacity level in serum. Result: In asthma male patients, serum levels of Zn, Fe, Cu, Mg, and TAS were significantly lower and Pb, Cd, and Cr significantly higher, whereas in female asthma patients, serum levels of Zn, Fe, Mg, and TAS were significantly lower and Pb significantly higher. In asthmatic obese male patients, Fe, Cu, and TAS were significantly lower, and Pb, Cd, and Co were significantly higher; in asthmatic obese female patients, Zn, Fe, Cu, Mg, and TAS were significantly lower, and Ni was significantly higher. In obese male patients, Zn, Fe, Cu, and TAS were significantly lower and Cd was significantly higher, and in obese female patients, Zn, Fe, Cu, Mg, and TAS were significantly lower. Conclusion: The influence of the level of trace elements, heavy metal, total antioxidant, and the lifestyle patterns, may increase the risk of asthma and obesity

    Awareness of Mobile Phone Radiation and Its Potential Health Hazards Among Students and Working-class Population During the COVID-19 Pandemic: A Cross-sectional Survey

    No full text
    COVID-19 pandemic has caused an increased dependence on mobile phones by students and working professionals. Mobile phones are indispensable gadgets with a wide range of applications. However, there are potential risks associated with its usage in terms of radiofrequency radiation. The objective of this study was to evaluate the knowledge of radiation and its biological adverse effects caused due to the usage of mobile phones among students and working professionals. An online awareness survey was conducted during the COVID-19 pandemic among 351 participants using Google forms. The questionnaire was disseminated to the WhatsApp groups of students and working professionals and the data was statistically analysed. Among the 351 subjects, 72% of the respondents used their mobile phones for more than 4 hours per day. However, less than 20% were fully aware of mobile phone radiation being listed in the possible carcinogen list by the World Health Organization (WHO). In addition, only half of the respondents considered the Specific Absorption Rate (SAR) value and information on radiation emission while purchasing a new phone. To conclude, the need for awareness of potential hazards associated with the mobile phone radiation seems crucial, especially during this time when everyone in the world and especially school and college students are highly dependent on mobile phones

    Awareness of Mobile Phone Radiation and Its Potential Health Hazards Among Students and Working-class Population During the COVID-19 Pandemic: A Cross-sectional Survey

    No full text
    COVID-19 pandemic has caused an increased dependence on mobile phones by students and working professionals. Mobile phones are indispensable gadgets with a wide range of applications. However, there are potential risks associated with its usage in terms of radiofrequency radiation. The objective of this study was to evaluate the knowledge of radiation and its biological adverse effects caused due to the usage of mobile phones among students and working professionals. An online awareness survey was conducted during the COVID-19 pandemic among 351 participants using Google forms. The questionnaire was disseminated to the WhatsApp groups of students and working professionals and the data was statistically analysed. Among the 351 subjects, 72% of the respondents used their mobile phones for more than 4 hours per day. However, less than 20% were fully aware of mobile phone radiation being listed in the possible carcinogen list by the World Health Organization (WHO). In addition, only half of the respondents considered the Specific Absorption Rate (SAR) value and information on radiation emission while purchasing a new phone. To conclude, the need for awareness of potential hazards associated with the mobile phone radiation seems crucial, especially during this time when everyone in the world and especially school and college students are highly dependent on mobile phones

    Awareness of Mobile Phone Radiation and Its Potential Health Hazards Among Students and Working-class Population During the COVID-19 Pandemic: A Cross-sectional Survey

    No full text
    COVID-19 pandemic has caused an increased dependence on mobile phones by students and working professionals. Mobile phones are indispensable gadgets with a wide range of applications. However, there are potential risks associated with its usage in terms of radiofrequency radiation. The objective of this study was to evaluate the knowledge of radiation and its biological adverse effects caused due to the usage of mobile phones among students and working professionals. An online awareness survey was conducted during the COVID-19 pandemic among 351 participants using Google forms. The questionnaire was disseminated to the WhatsApp groups of students and working professionals and the data was statistically analysed. Among the 351 subjects, 72% of the respondents used their mobile phones for more than 4 hours per day. However, less than 20% were fully aware of mobile phone radiation being listed in the possible carcinogen list by the World Health Organization (WHO). In addition, only half of the respondents considered the Specific Absorption Rate (SAR) value and information on radiation emission while purchasing a new phone. To conclude, the need for awareness of potential hazards associated with the mobile phone radiation seems crucial, especially during this time when everyone in the world and especially school and college students are highly dependent on mobile phones
    corecore