479 research outputs found

    From responsible research to responsible innovation:Challenges in implementation

    Get PDF

    Kinetic theory of point vortices: diffusion coefficient and systematic drift

    Full text link
    We develop a kinetic theory for point vortices in two-dimensional hydrodynamics. Using standard projection operator technics, we derive a Fokker-Planck equation describing the relaxation of a ``test'' vortex in a bath of ``field'' vortices at statistical equilibrium. The relaxation is due to the combined effect of a diffusion and a drift. The drift is shown to be responsible for the organization of point vortices at negative temperatures. A description that goes beyond the thermal bath approximation is attempted. A new kinetic equation is obtained which respects all conservation laws of the point vortex system and satisfies a H-theorem. Close to equilibrium this equation reduces to the ordinary Fokker-Planck equation.Comment: 50 pages. To appear in Phys. Rev.

    The impact of basic vs. enhanced Go NAPSACC on child care centers' healthy eating and physical activity practices: Protocol for a type 3 hybrid effectiveness-implementation cluster-randomized trial

    Get PDF
    Background: To prevent childhood obesity and promote healthy development, health authorities recommend that child care programs use the evidence-based practices that foster healthy eating and physical habits in children. Go NAPSACC is an intervention shown to improve use of these recommended practices, but it is known to encounter barriers that limit its impact and widespread use. Methods: This study will use a type 3 hybrid effectiveness-implementation cluster-randomized trial to compare effectiveness and implementation outcomes achieved from Go NAPSACC delivered with a basic or enhanced implementation approach. Participants will include approximately 25 coaches from Child Care Aware of Kentucky (serving four geographic regions), 97 child care centers with a director and teacher from each and two cross-sectional samples of 485 3-4-year-old children (one recruitment at baseline, another at follow-up). Coaches will be randomly assigned to deliver Go NAPSACC using either the basic or enhanced implementation approach. "Basic Go NAPSACC" represents the traditional way of delivering Go NAPSACC. "Enhanced Go NAPSACC" incorporates preparatory and support activities before and during their Go NAPSACC work, which are guided by the Quality Implementation Framework and the Consolidated Framework for Implementation Research. Data will be collected primarily at baseline and post-intervention, with select measures continuing through 6, 12, and 24 months post-intervention. Guided largely by RE-AIM, outcomes will assess change in centers' use of evidence-based nutrition and physical activity practices (primary, measured via observation); centers' adoption, implementation, and maintenance of the Go NAPSACC program (assessed via website use); center directors', teachers', and coaches' perceptions of contextual factors (assessed via self-report surveys); children's eating and physical activity behaviors at child care (measured via observation and accelerometers); and cost-effectiveness (assessed via logs and expense tracking). The hypotheses anticipate that "Enhanced Go NAPSACC" will have greater effects than "Basic Go NAPSACC." Discussion: This study incorporates many lessons gleaned from the growing implementation science field, but also offers opportunities to address the field's research priorities, including applying a systematic method to tailor implementation strategies, examining the processes and mechanisms through which implementation strategies produce their effects, and conducting an economic evaluation of implementation strategies. Trial Registration: ClinicalTrials.gov, NCT03938103, Registered April 8, 201

    Discrete Breathers

    Full text link
    Nonlinear classical Hamiltonian lattices exhibit generic solutions in the form of discrete breathers. These solutions are time-periodic and (typically exponentially) localized in space. The lattices exhibit discrete translational symmetry. Discrete breathers are not confined to certain lattice dimensions. Necessary ingredients for their occurence are the existence of upper bounds on the phonon spectrum (of small fluctuations around the groundstate) of the system as well as the nonlinearity in the differential equations. We will present existence proofs, formulate necessary existence conditions, and discuss structural stability of discrete breathers. The following results will be also discussed: the creation of breathers through tangent bifurcation of band edge plane waves; dynamical stability; details of the spatial decay; numerical methods of obtaining breathers; interaction of breathers with phonons and electrons; movability; influence of the lattice dimension on discrete breather properties; quantum lattices - quantum breathers. Finally we will formulate a new conceptual aproach capable of predicting whether discrete breather exist for a given system or not, without actually solving for the breather. We discuss potential applications in lattice dynamics of solids (especially molecular crystals), selective bond excitations in large molecules, dynamical properties of coupled arrays of Josephson junctions, and localization of electromagnetic waves in photonic crystals with nonlinear response.Comment: 62 pages, LaTeX, 14 ps figures. Physics Reports, to be published; see also at http://www.mpipks-dresden.mpg.de/~flach/html/preprints.htm

    Clinical Evidence Supports a Protective Role for CXCL5 in Coronary Artery Disease

    Get PDF
    Our goal was to measure the association of CXCL5 and molecular phenotypes associated with coronary atherosclerosis severity in patients at least 65 years old. CXCL5 is classically defined as a proinflammatory chemokine, but its role in chronic inflammatory diseases, such as coronary atherosclerosis, is not well defined. We enrolled individuals who were at least 65 years old and undergoing diagnostic cardiac catheterization. Coronary artery disease (CAD) severity was quantified in each subject via coronary angiography by calculating a CAD score. Circulating CXCL5 levels were measured from plasma, and both DNA genotyping and mRNA expression levels in peripheral blood mononuclear cells were quantified via microarray gene chips. We observed a negative association of CXCL5 levels with CAD at an odds ratio (OR) of 0.46 (95% CI, 0.27–0.75). Controlling for covariates, including sex, statin use, hypertension, hyperlipidemia, obesity, self-reported race, smoking, and diabetes, the OR was not significantly affected [OR, 0.54 (95% CI, 0.31–0.96)], consistent with a protective role for CXCL5 in coronary atherosclerosis. We also identified 18 genomic regions with expression quantitative trait loci of genes correlated with both CAD severity and circulating CXCL5 levels. Our clinical findings are consistent with the emerging link between chemokines and atherosclerosis and suggest new therapeutic targets for CAD

    Correlation Entropy of an Interacting Quantum Field and H-theorem for the O(N) Model

    Full text link
    Following the paradigm of Boltzmann-BBGKY we propose a correlation entropy (of the nth order) for an interacting quantum field, obtained by `slaving' (truncation with causal factorization) of the higher (n+1 th) order correlation functions in the Schwinger-Dyson system of equations. This renders an otherwise closed system effectively open where dissipation arises. The concept of correlation entropy is useful for addressing issues related to thermalization. As a small yet important step in that direction we prove an H-theorem for the correlation entropy of a quantum mechanical O(N) model with a Closed Time Path Two Particle Irreducible Effective Action at the level of Next-to-Leading-Order large N approximation. This model may be regarded as a field theory in 00 space dimensions.Comment: 22 page

    Properties and microstructure of alkali-activated red clay brick waste

    Get PDF
    Sintered red clay ceramic is used to produce hollow bricks which are manufactured in enormous quantities in Spain. They also constitute a major fraction of construction and demolition waste. The aim of this research was to investigate the properties and microstructure of alkali-activated cement pastes and mortars produced using red clay brick waste. The work shows that the type and concentration of alkali activator can be optimised to produce mortar samples with compressive strengths up to 50 MPa after curing for 7 days at 65 C. This demonstrates a new potential added value reuse application for this important waste material.The authors are grateful to the Spanish Ministry of Science and Innovation for supporting this study through Project GEOCEDEM BIA 2011-26947, and to FEDER funding. They also thank the Institute for Science and Technology of Concrete - ICITECH, for providing the means to carry out this investigation; and Universitat Jaume I, for supporting this research through the research stay granted.Reig Cerdá, L.; Tashima, MM.; Borrachero Rosado, MV.; Monzó Balbuena, JM.; Cheeseman, C.; Paya Bernabeu, JJ. (2013). Properties and microstructure of alkali-activated red clay brick waste. Construction and Building Materials. 43:98-106. doi:10.1016/j.conbuildmat.2013.01.031S981064

    System Size and Energy Dependence of Jet-Induced Hadron Pair Correlation Shapes in Cu+Cu and Au+Au Collisions at sqrt(s_NN) = 200 and 62.4 GeV

    Get PDF
    We present azimuthal angle correlations of intermediate transverse momentum (1-4 GeV/c) hadrons from {dijets} in Cu+Cu and Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is broadened, non-Gaussian, and peaked away from \Delta\phi=\pi in central and semi-central collisions in all the systems. The broadening and peak location are found to depend upon the number of participants in the collision, but not on the collision energy or beam nuclei. These results are consistent with sound or shock wave models, but pose challenges to Cherenkov gluon radiation models.Comment: 464 authors from 60 institutions, 6 pages, 3 figures, 2 tables. Submitted to Physical Review Letters. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Improved Measurement of Double Helicity Asymmetry in Inclusive Midrapidity pi^0 Production for Polarized p+p Collisions at sqrt(s)=200 GeV

    Get PDF
    We present an improved measurement of the double helicity asymmetry for pi^0 production in polarized proton-proton scattering at sqrt(s) = 200 GeV employing the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The improvements to our previous measurement come from two main factors: Inclusion of a new data set from the 2004 RHIC run with higher beam polarizations than the earlier run and a recalibration of the beam polarization measurements, which resulted in reduced uncertainties and increased beam polarizations. The results are compared to a Next to Leading Order (NLO) perturbative Quantum Chromodynamics (pQCD) calculation with a range of polarized gluon distributions.Comment: 389 authors, 4 pages, 2 tables, 1 figure. Submitted to Phys. Rev. D, Rapid Communications. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore