116 research outputs found

    Serum anti-GM2 and anti-GalNAc-GD1a IgG antibodies are biomarkers for acute canine polyradiculoneuritis

    Get PDF
    Objectives: A previous single-country pilot study indicated serum anti-GM2 and anti-GA1 anti-glycolipid antibodies as potential biomarkers for acute canine polyradiculoneuritis. This study aims to validate these findings in a large geographically heterogenous cohort. Materials and Methods: Sera from 175 dogs clinically diagnosed with acute canine polyradiculoneuritis, 112 dogs with other peripheral nerve, cranial nerve or neuromuscular disorders and 226 neurologically normal dogs were screened for anti-glycolipid antibodies against 11 common glycolipid targets to determine the immunoglobulin G anti-glycolipid antibodies with the highest combined sensitivity and specificity for acute canine polyradiculoneuritis. Results: Anti-GM2 anti-glycolipid antibodies reached the highest combined sensitivity and specificity (sensitivity: 65.1%, 95% confidence interval 57.6 to 72.2%; specificity: 90.2%, 95% confidence interval 83.1 to 95.0%), followed by anti-GalNAc-GD1a anti-glycolipid antibodies (sensitivity: 61.7%, 95% confidence interval 54.1 to 68.9%; specificity: 89.3%, 95% confidence interval 82.0 to 94.3%) and these anti-glycolipid antibodies were frequently present concomitantly. Anti-GA1 anti-glycolipid antibodies were detected in both acute canine polyradiculoneuritis and control animals. Both for anti-GM2 and anti-GalNAc-GD1a anti-glycolipid antibodies, sex was found a significantly associated factor with a female to male odds ratio of 2.55 (P=0.0096) and 3.00 (P=0.0198), respectively. Anti-GalNAc-GD1a anti-glycolipid antibodies were more commonly observed in dogs unable to walk (odds ratio 4.56; P=0.0076). Clinical Significance: Anti-GM2 and anti-GalNAc-GD1a immunoglobulin G anti-glycolipid antibodies represent serum biomarkers for acute canine polyradiculoneuritis

    Serum anti-GM2 and anti-GalNAc-GD1a IgG antibodies are biomarkers for acute canine polyradiculoneuritis

    Get PDF
    OBJECTIVES: A previous single-country pilot study indicated serum anti-GM2 and anti-GA1 anti-glycolipid antibodies as potential biomarkers for acute canine polyradiculoneuritis. This study aims to validate these findings in a large geographically heterogenous cohort. MATERIALS AND METHODS: Sera from 175 dogs clinically diagnosed with acute canine polyradiculoneuritis, 112 dogs with other peripheral nerve, cranial nerve or neuromuscular disorders and 226 neurologically normal dogs were screened for anti-glycolipid antibodies against 11 common glycolipid targets to determine the immunoglobulin G anti-glycolipid antibodies with the highest combined sensitivity and specificity for acute canine polyradiculoneuritis. RESULTS: Anti-GM2 anti-glycolipid antibodies reached the highest combined sensitivity and specificity (sensitivity: 65.1%, 95% confidence interval 57.6 to 72.2%; specificity: 90.2%, 95% confidence interval 83.1 to 95.0%), followed by anti-GalNAc-GD1a anti-glycolipid antibodies (sensitivity: 61.7%, 95% confidence interval 54.1 to 68.9%; specificity: 89.3%, 95% confidence interval 82.0 to 94.3%) and these anti-glycolipid antibodies were frequently present concomitantly. Anti-GA1 anti-glycolipid antibodies were detected in both acute canine polyradiculoneuritis and control animals. Both for anti-GM2 and anti-GalNAc-GD1a anti-glycolipid antibodies, sex was found a significantly associated factor with a female to male odds ratio of 2.55 (1.27 to 5.31) and 3.00 (1.22 to 7.89), respectively. Anti-GalNAc-GD1a anti-glycolipid antibodies were more commonly observed in dogs unable to walk (OR 4.56, 1.56 to 14.87). CLINICAL SIGNIFICANCE: Anti-GM2 and anti-GalNAc-GD1a immunoglobulin G anti-glycolipid antibodies represent serum biomarkers for acute canine polyradiculoneuritis.This study was funded by PetSavers, the charitable division of the BSAVA, and by The Wellcome Trust (Grants 092805 and 202789 awarded to HJW).https://onlinelibrary.wiley.com/journal/17485827Companion Animal Clinical Studie

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Study of the lineshape of the chi(c1) (3872) state

    Get PDF
    A study of the lineshape of the chi(c1) (3872) state is made using a data sample corresponding to an integrated luminosity of 3 fb(-1) collected in pp collisions at center-of-mass energies of 7 and 8 TeV with the LHCb detector. Candidate chi(c1)(3872) and psi(2S) mesons from b-hadron decays are selected in the J/psi pi(+)pi(-) decay mode. Describing the lineshape with a Breit-Wigner function, the mass splitting between the chi(c1 )(3872) and psi(2S) states, Delta m, and the width of the chi(c1 )(3872) state, Gamma(Bw), are determined to be (Delta m=185.598 +/- 0.067 +/- 0.068 Mev,)(Gamma BW=1.39 +/- 0.24 +/- 0.10 Mev,) where the first uncertainty is statistical and the second systematic. Using a Flatte-inspired model, the mode and full width at half maximum of the lineshape are determined to be (mode=3871.69+0.00+0.05 MeV.)(FWHM=0.22-0.04+0.13+0.07+0.11-0.06-0.13 MeV, ) An investigation of the analytic structure of the Flatte amplitude reveals a pole structure, which is compatible with a quasibound D-0(D) over bar*(0) state but a quasivirtual state is still allowed at the level of 2 standard deviations

    Measurement of the CKM angle γγ in B±DK±B^\pm\to D K^\pm and B±Dπ±B^\pm \to D π^\pm decays with DKS0h+hD \to K_\mathrm S^0 h^+ h^-

    Get PDF
    A measurement of CPCP-violating observables is performed using the decays B±DK±B^\pm\to D K^\pm and B±Dπ±B^\pm\to D \pi^\pm, where the DD meson is reconstructed in one of the self-conjugate three-body final states KSπ+πK_{\mathrm S}\pi^+\pi^- and KSK+KK_{\mathrm S}K^+K^- (commonly denoted KSh+hK_{\mathrm S} h^+h^-). The decays are analysed in bins of the DD-decay phase space, leading to a measurement that is independent of the modelling of the DD-decay amplitude. The observables are interpreted in terms of the CKM angle γ\gamma. Using a data sample corresponding to an integrated luminosity of 9fb19\,\text{fb}^{-1} collected in proton-proton collisions at centre-of-mass energies of 77, 88, and 13TeV13\,\text{TeV} with the LHCb experiment, γ\gamma is measured to be (68.75.1+5.2)\left(68.7^{+5.2}_{-5.1}\right)^\circ. The hadronic parameters rBDKr_B^{DK}, rBDπr_B^{D\pi}, δBDK\delta_B^{DK}, and δBDπ\delta_B^{D\pi}, which are the ratios and strong-phase differences of the suppressed and favoured B±B^\pm decays, are also reported

    Measurement of forward charged hadron flow harmonics in peripheral PbPb collisions at √sNN = 5.02 TeV with the LHCb detector

    Get PDF
    Flow harmonic coefficients, v n , which are the key to studying the hydrodynamics of the quark-gluon plasma (QGP) created in heavy-ion collisions, have been measured in various collision systems and kinematic regions and using various particle species. The study of flow harmonics in a wide pseudorapidity range is particularly valuable to understand the temperature dependence of the shear viscosity to entropy density ratio of the QGP. This paper presents the first LHCb results of the second- and the third-order flow harmonic coefficients of charged hadrons as a function of transverse momentum in the forward region, corresponding to pseudorapidities between 2.0 and 4.9, using the data collected from PbPb collisions in 2018 at a center-of-mass energy of 5.02 TeV . The coefficients measured using the two-particle angular correlation analysis method are smaller than the central-pseudorapidity measurements at ALICE and ATLAS from the same collision system but share similar features

    Helium identification with LHCb

    Get PDF
    The identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. The method is developed using pp collision data at √(s) = 13 TeV recorded by the LHCb experiment in the years 2016 to 2018, corresponding to an integrated luminosity of 5.5 fb-1. A total of around 105 helium and antihelium candidates are identified with negligible background contamination. The helium identification efficiency is estimated to be approximately 50% with a corresponding background rejection rate of up to O(10^12). These results demonstrate the feasibility of a rich programme of measurements of QCD and astrophysics interest involving light nuclei

    Study of the doubly charmed tetraquark T+cc

    Get PDF
    Quantum chromodynamics, the theory of the strong force, describes interactions of coloured quarks and gluons and the formation of hadronic matter. Conventional hadronic matter consists of baryons and mesons made of three quarks and quark-antiquark pairs, respectively. Particles with an alternative quark content are known as exotic states. Here a study is reported of an exotic narrow state in the D0D0π+ mass spectrum just below the D*+D0 mass threshold produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The state is consistent with the ground isoscalar T+cc tetraquark with a quark content of ccu⎯⎯⎯d⎯⎯⎯ and spin-parity quantum numbers JP = 1+. Study of the DD mass spectra disfavours interpretation of the resonance as the isovector state. The decay structure via intermediate off-shell D*+ mesons is consistent with the observed D0π+ mass distribution. To analyse the mass of the resonance and its coupling to the D*D system, a dedicated model is developed under the assumption of an isoscalar axial-vector T+cc state decaying to the D*D channel. Using this model, resonance parameters including the pole position, scattering length, effective range and compositeness are determined to reveal important information about the nature of the T+cc state. In addition, an unexpected dependence of the production rate on track multiplicity is observed
    corecore