878 research outputs found

    Cooperative Multi-Cell Massive Access with Temporally Correlated Activity

    Full text link
    This paper investigates the problem of activity detection and channel estimation in cooperative multi-cell massive access systems with temporally correlated activity, where all access points (APs) are connected to a central unit via fronthaul links. We propose to perform user-centric AP cooperation for computation burden alleviation and introduce a generalized sliding-window detection strategy for fully exploiting the temporal correlation in activity. By establishing the probabilistic model associated with the factor graph representation, we propose a scalable Dynamic Compressed Sensing-based Multiple Measurement Vector Generalized Approximate Message Passing (DCS-MMV-GAMP) algorithm from the perspective of Bayesian inference. Therein, the activity likelihood is refined by performing standard message passing among the activities in the spatial-temporal domain and GAMP is employed for efficient channel estimation. Furthermore, we develop two schemes of quantize-and-forward (QF) and detect-and-forward (DF) based on DCS-MMV-GAMP for the finite-fronthaul-capacity scenario, which are extensively evaluated under various system limits. Numerical results verify the significant superiority of the proposed approach over the benchmarks. Moreover, it is revealed that QF can usually realize superior performance when the antenna number is small, whereas DF shifts to be preferable with limited fronthaul capacity if the large-scale antenna arrays are equipped.Comment: 16 pages, 17 figures, minor revisio

    Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of coxsackievirus b3-induced viral myocarditis reduces myocardium inflammation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently, some studies indicate that interleukin (IL)-17, known as a T cell (Th17)-derived proinflammatory cytokine, is the major mediator of tissue inflammation in inflammatory and autoimmune diseases. Viral myocarditis (VMC) is a T cell-mediated autoimmune disease, but the role for IL-17 in VMC is not well defined.</p> <p>Results</p> <p>Using IL-17 monoclonal antibody (IL-17mAb)-treated VMC mice, we tested the pathogenic role of IL-17 in the development of VMC. VMC mice were treated with monoclonal rat anti-murine IL-17 antibody (anti-IL-17) or rat IgG<sub>2A </sub>isotype control or phosphate-buffered solution 3 days after Coxsackievirus B3 (CVB3) injection. Normal mice without any manipulation were taken as normal control. The survival rates of mice were monitored and heart pathology was examined histologically. IL-17, IL-6, and TNF-α mRNA of the myocardium were assessed by semi-quantitative RT-PCR. Systemic IL-17, IL-6, and TNF-α level were measured by enzyme-linked immunosorbent assay, and local myocardium IL-17 expression was analyzed using immunohistochemical staining. Flow cytometric analysis was used to evaluate the frequencies of Th17 subsets in CD4<sup>+</sup>T cells. Results showed that neutralization of IL-17 with anti-IL-17 can ameliorate clinical symptoms, defer disease course, decrease serum IL-17 level, without declining the IL-17, IL-6 and TNF-α mRNA transcript level and serum IL-6, TNF-α level. The differentiation and proliferation of the Th17 cells were unchanged.</p> <p>Conclusions</p> <p>Our data suggest that IL-17 is crucially involved in the pathogenesis of murine VMC, IL-17 inhibition might ameliorate the myocardium inflammation after the onset of VMC.</p

    OASIS: A Large-Scale Dataset for Single Image 3D in the Wild

    Full text link
    Single-view 3D is the task of recovering 3D properties such as depth and surface normals from a single image. We hypothesize that a major obstacle to single-image 3D is data. We address this issue by presenting Open Annotations of Single Image Surfaces (OASIS), a dataset for single-image 3D in the wild consisting of annotations of detailed 3D geometry for 140,000 images. We train and evaluate leading models on a variety of single-image 3D tasks. We expect OASIS to be a useful resource for 3D vision research. Project site: https://pvl.cs.princeton.edu/OASIS.Comment: Accepted to CVPR 202

    Distinct different expression of Th17 and Th9 cells in coxsackie virus B3-induced mice viral myocarditis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently, a new subset of CD4<sup>+</sup>T helper(Th) cell that predominantly secret cytokine interleukin-9(IL-9) is identified, termed Th9 cell. It has been reported to participate in tissue inflammation and autoimmune responses, and induce disease which differed from Th17 cells. Th17 cells have been shown to play a critical role in viral myocarditis (VMC), but whether Th9 cells are involved in the pathogenesis of VMC remains unclear.</p> <p>Results</p> <p>BALB/c mice were intraperitoneally (i.p) injected with coxsackie virus B3(CVB3) for establishing VMC models. Control mice were treated with phosphate-buffered saline i.p. On day 0,7,14,21,28,35,42 after injection, myocardial histopathological changes were evaluated by hematoxylin-eosin staining. Splenic Th17 and Th9 cells subsets were analyzed by flow cytometry. And cardiac IL-17, IL-9 mRNA were measured by semi-quantitative reverse transcription-PCR and nested PCR, respectively. Results showed the levels of Th17 cells and IL-17 mRNA obviously increased in VMC mice on 7 day after infection, peaked on day 28, and highly persisted to at least day 42 (p < 0.05). While the frequencies of Th9 cells and IL-9 mRNA showed no significant difference between VMC and control group throughout the course of the experiment(p > 0.05).</p> <p>Conclusions</p> <p>It was differentiated Th17 but not Th9 cells significantly elevated in the development of CVB3-induced VMC. The microenvironment of VMC seemed to contribute to the differentiation and proliferation of Th17 rather than Th9 cells. Our preliminary data implied Th9 cells could not protect against VMC nor promote the disease.</p

    Reducing toxicity and increasing efficiency: aconitine with liquiritin and glycyrrhetinic acid regulate calcium regulatory proteins in rat myocardial cell

    Get PDF
    Background: Compatibility of Radix Aconiti Carmichaeli and Liquorice is known to treat heart diseases such as heart failure and cardiac arrhythmias. This work answers the question that whether the active components (Aconitine, Liquiritin and Glycyrrhetinic Acid) of Radix Aconiti Carmichaeli and Liquorice could result in regulating intracellular calcium homeostasis and calcium cycling, and thereby verifies the therapeutic material basis.Materials and Methods: The myocardial cells were divided into twelve groups randomly as control group, Aconitine group, nine different dose groups that orthogonal combined with Aconitine, Liquiritin and Glycyrrhetinic Acid, and Verapamil group. The myocardial cellular survival rate and morphology were assessed. The expression of calcium regulation protein(RyR2、NCX1、DHPR-a1) in the myocardial cell by Western-blotting.Results: The results exhibited that Aconitine (120 uM) significantly damaged on myocardial cell, decreased the survival rate and expression of Na+/Ca2+ exchangers (NCX1) and dihydropteridine reducta-α1 (DHPR-a1), and increased the expression of ryanodine receptor type2 (RyR2) obviously. The compatibility groups (Aconitine, Liquiritin and Glycyrrhetinic Acid) all could against the damage on the myocardial cell by Aconitine at different levels.Conclusion: Aconitine with Liquiritin and Glycyrrhetinic Acid may regulate the expression of calcium-regulated proteins to protect myocardial cells from damage.Keywords: Aconitine, Liquiritin, Glycyrrhetinic Acid, myocardial cell, calcium regulator

    Rabbit Hemorrhagic Disease Virus Non-structural Protein 6 Induces Apoptosis in Rabbit Kidney Cells

    Get PDF
    Rabbit hemorrhagic disease (RHD) is a highly contagious disease caused by rabbit hemorrhagic disease virus (RHDV). Previous research has shown that RHDV induces apoptosis in numerous cell types, although the molecular mechanisms underlying the apoptosis induced by RHDV are not well understood. One possible factor is non-structural protein 6 (NSP6), a 3C-like protease that plays an important role in processing viral polyprotein precursors into mature non-structural proteins. To fully establish a role for NSP6, the present study examined the effects of ectopic expression of the protein in rabbit (RK13) and human (HeLa and HepG2) cells. We found that NSP6 suppressed cell viability and promoted apoptosis in all three cell types in a dose-dependent manner. We also identified increased caspase-3, -8, and -9 activities in RK13 cell, and an increased Bax to Bcl2 mRNA ratio. Mechanistically, the ability of NSP6 to induce apoptosis was impaired by mutation of the catalytic His27 residue. Our study has shown that RHDV NSP6 can induce apoptosis in host cells and is likely an important contributor to RHDV-induced apoptosis and pathogenesis

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

    Get PDF
    A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at root s = 8 TeV. The data correspond to an integrated luminosity of 19.7 fb(-1). The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t (t) over bar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95 confidence level for the product of the production cross section and branching fraction sigma(gg -> X) B(X -> HH -> b (b) over barb (b) over bar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with amass scale Lambda(R) = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV
    corecore