312 research outputs found

    Chesapeake Governance Study: Report of 2021 Decision Maker Interview Results

    Get PDF
    This report describes the aggregate results from a series of interviews conducted with decision makers involved in governance of the Chesapeake Watershed. Interviews began in June and ended in December of 2021. Information collected will be combined with other data to create and then test a computer model to predict likely policy changes under a range of future scenarios. It is part of a larger project funded by the National Science Foundation called Modeling the Dynamics of Human and Estuarine Systems with Regulatory Feedbacks (Award #2009248). Using the Chesapeake Bay as an example, this project will combine the policy model that we are designing with biophysical models to predict how social, economic and policy changes impact water quality, and how changes in water quality influence human behavior and decision-making

    Developing standard pedestrian-equivalent factors: passenger car–equivalent approach for dealing with pedestrian diversity

    Get PDF
    Similar to vehicular traffic, pedestrians, despite having diverse capabilities and body sizes, can be classified as heterogeneous. The use of vehicular traffic resolves the diversity issue with a conversion of heterogeneous vehicle flow into an equivalent flow with the use of passenger car–equivalent (PCE) factors. Analysis of pedestrian flow has yet to incorporate pedestrian diversity analysis implicitly into the design of pedestrian facilities, although some form of adjustment has been suggested. This paper introduces the concept of PCE-type factors for mixed pedestrian traffic called standard pedestrian-equivalent (SPE) factors. Estimates of SPE factors are made relative to the average commuter. The equivalent total travel time approach for PCE estimation was adapted to consider the effects of the differences in physical and operational characteristics of pedestrians, particularly walking speed and body size. Microsimulation of pedestrians was employed to evaluate hypothetical pedestrian proportions so as to generate corresponding flow relationships. Walking speeds and body sizes were varied across different flow conditions, walkway widths, and proportions of other pedestrian types. The first part of this paper explores how the two pedestrian characteristics (walking speed and body size) influence estimated SPE factors. The second part is a case study in which field-collected data illustrate SPE factors calculated for older adults, obese pedestrians, and their combination. An application of SPE factors demonstrates the robustness of the methodology in bridging the gap between pedestrian compositions and planning practice

    Hyperbolic contraction measuring systems for extensional flow

    Get PDF
    In this paper an experimental method for extensional measurements on medium viscosity fluids in contraction flow is evaluated through numerical simulations and experimental measurements. This measuring technique measures the pressure drop over a hyperbolic contraction, caused by fluid extension and fluid shear, where the extensional component is assumed to dominate. The present evaluative work advances our previous studies on this experimental method by introducing several contraction ratios and addressing different constitutive models of varying shear and extensional response. The constitutive models included are those of the constant viscosity Oldroyd-B and FENE-CR models, and the shear-thinning LPTT model. Examining the results, the impact of shear and first normal stress difference on the measured pressure drop are studied through numerical pressure drop predictions. In addition, stream function patterns are investigated to detect vortex development and influence of contraction ratio. The numerical predictions are further related to experimental measurements for the flow through a 15:1 contraction ratio with three different test fluids. The measured pressure drops are observed to exhibit the same trends as predicted in the numerical simulations, offering close correlation and tight predictive windows for experimental data capture. This result has demonstrated that the hyperbolic contraction flow is well able to detect such elastic fluid properties and that this is matched by numerical predictions in evaluation of their flow response. The hyperbolical contraction flow technique is commended for its distinct benefits: it is straightforward and simple to perform, the Hencky strain can be set by changing contraction ratio, non-homogeneous fluids can be tested, and one can directly determine the degree of elastic fluid behaviour. Based on matching of viscometric extensional viscosity response for FENE-CR and LPTT models, a decline is predicted in pressure drop for the shear-thinning LPTT model. This would indicate a modest impact of shear in the flow since such a pressure drop decline is relatively small. It is particularly noteworthy that the increase in pressure drop gathered from the experimental measurements is relatively high despite the low Deborah number range explored

    Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel

    Get PDF
    A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved

    Measurement of the View the tt production cross-section using eμ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σtt¯) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σtt¯ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σtt¯ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    Search for strong gravity in multijet final states produced in pp collisions at √s=13 TeV using the ATLAS detector at the LHC

    Get PDF
    A search is conducted for new physics in multijet final states using 3.6 inverse femtobarns of data from proton-proton collisions at √s = 13TeV taken at the CERN Large Hadron Collider with the ATLAS detector. Events are selected containing at least three jets with scalar sum of jet transverse momenta (HT) greater than 1TeV. No excess is seen at large HT and limits are presented on new physics: models which produce final states containing at least three jets and having cross sections larger than 1.6 fb with HT > 5.8 TeV are excluded. Limits are also given in terms of new physics models of strong gravity that hypothesize additional space-time dimensions

    Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at sqrt [ s ] = 13TeV

    Get PDF
    A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb−1 of proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at √s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions
    corecore