415 research outputs found

    Effective action and interaction energy of coupled quantum dots

    Full text link
    We obtain the effective action of tunnel-coupled quantum dots, by modeling the system as a Luttinger liquid with multiple barriers. For a double dot system, we find that the resonance conditions for perfect conductance form a hexagon in the plane of the two gate voltages controlling the density of electrons in each dot. We also explicitly obtain the functional dependence of the interaction energy and peak-splitting on the gate voltage controlling tunneling between the dots and their charging energies. Our results are in good agreement with recent experimental results, from which we obtain the Luttinger interaction parameter K=0.74K=0.74.Comment: 5 pgs,latex,3 figs,revised version to be publshed in Phys.Rev.

    Strong Tunneling in Double-Island Structures

    Full text link
    We study the electron transport through a system of two low-capacitance metal islands connected in series between two electrodes. The work is motivated in part by experiments on semiconducting double-dots, which show intriguing effects arising from coherent tunneling of electrons and mixing of the single-electron states across tunneling barriers. In this article, we show how coherent tunneling affects metallic systems and leads to a mixing of the macroscopic charge states across the barriers. We apply a recently formulated RG approach to examine the linear response of the system with high tunnel conductances (up to 8e^2/h). In addition we calculate the (second order) cotunneling contributions to the non-linear conductance. Our main results are that the peaks in the linear and nonlinear conductance as a function of the gate voltage are reduced and broadened in an asymmetric way, as well as shifted in their positions. In the limit where the two islands are coupled weakly to the electrodes, we compare to theoretical results obtained by Golden and Halperin and Matveev et al. In the opposite case when the two islands are coupled more strongly to the leads than to each other, the peaks are found to shift, in qualitative agreement with the recent prediction of Andrei et al. for a similar double-dot system which exhibits a phase transition.Comment: 12 page

    Fractional plateaus in the Coulomb blockade of coupled quantum dots

    Full text link
    Ground-state properties of a double-large-dot sample connected to a reservoir via a single-mode point contact are investigated. When the interdot transmission is perfect and the dots controlled by the same dimensionless gate voltage, we find that for any finite backscattering from the barrier between the lead and the left dot, the average dot charge exhibits a Coulomb-staircase behavior with steps of size e/2 and the capacitance peak period is halved. The interdot electrostatic coupling here is weak. For strong tunneling between the left dot and the lead, we report a conspicuous intermediate phase in which the fractional plateaus get substantially altered by an increasing slope.Comment: 6 pages, 4 figures, final versio

    Coulomb blockade of strongly coupled quantum dots studied via bosonization of a channel with a finite barrier

    Full text link
    A pair of quantum dots, coupled through a point contact, can exhibit Coulomb blockade effects that reflect an oscillatory term in the dots' total energy whose value depends on whether the total number of electrons on the dots is even or odd. The effective energy associated with this even-odd alternation is reduced, relative to the bare Coulomb blockade energy for uncoupled dots, by a factor (1-f) that decreases as the interdot coupling is increased. When the transmission coefficient for interdot electronic motion is independent of energy and the same for all channels within the point contact (which are assumed uncoupled), the factor (1-f) takes on a universal value determined solely by the number of channels and the dimensionless conductance g of each individual channel. This paper studies corrections to the universal value of (1-f) that result when the transmission coefficent varies over energy scales of the size of the bare Coulomb blockade energy. We consider a model in which the point contact is described by a single orbital channel containing a parabolic barrier potential, and we calculate the leading correction to (1-f) for one-channel (spin-split) and two-channel (spin-degenerate) point contacts in the limit where the single orbital channel is almost completely open. By generalizing a previously used bosonization technique, we find that, for a given value of the dimensionless conductance g, the value of (1-f) is increased relative to its value for a zero-thickness barrier, but the absolute value of the increase is small in the region where our calculations apply.Comment: 13 pages, 3 Postscript figure

    Coulomb Blockade of Tunneling Through a Double Quantum Dot

    Full text link
    We study the Coulomb blockade of tunneling through a double quantum dot. The temperature dependence of the linear conductance is strongly affected by the inter-dot tunneling. As the tunneling grows, a crossover from temperature-independent peak conductance to a power-law suppression of conductance at low temperatures is predicted. This suppression is a manifestation of the Anderson orthogonality catastrophe associated with the charge re-distribution between the dots, which accompanies the tunneling of an electron into a dot. We find analytically the shapes of the Coulomb blockade peaks in conductance as a function of gate voltage.Comment: 11 pages, revtex3.0 and multicols.sty, 4 figures uuencode

    Coulomb correlations effects on localized charge relaxation in the coupled quantum dots

    Full text link
    We analyzed localized charge time evolution in the system of two interacting quantum dots (QD) (artificial molecule) coupled with the continuous spectrum states. We demonstrated that Coulomb interaction modifies relaxation rates and is responsible for non-monotonic time evolution of the localized charge. We suggested new mechanism of this non-monotonic charge time evolution connected with charge redistribution between different relaxation channels in each QD.Comment: 10 pages, 10 figure

    Trisomy 21 activates the kynurenine pathway via increased dosage of interferon receptors

    Get PDF
    Altres ajuts: This work has also been supported by a "Marató TV3" grant (20141210 to J.F. and 044412 to R.B.).Trisomy 21 (T21) causes Down syndrome (DS), affecting immune and neurological function by ill-defined mechanisms. Here we report a large metabolomics study of plasma and cerebrospinal fluid, showing in independent cohorts that people with DS produce elevated levels of kynurenine and quinolinic acid, two tryptophan catabolites with potent immunosuppressive and neurotoxic properties, respectively. Immune cells of people with DS overexpress IDO1, the rate-limiting enzyme in the kynurenine pathway (KP) and a known interferon (IFN)-stimulated gene. Furthermore, the levels of IFN-inducible cytokines positively correlate with KP dysregulation. Using metabolic tracing assays, we show that overexpression of IFN receptors encoded on chromosome 21 contribute to enhanced IFN stimulation, thereby causing IDO1 overexpression and kynurenine overproduction in cells with T21. Finally, a mouse model of DS carrying triplication of IFN receptors exhibits KP dysregulation. Together, our results reveal a mechanism by which T21 could drive immunosuppression and neurotoxicity in DS

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters
    corecore