86 research outputs found

    A Higher Dimensional Stationary Rotating Black Hole Must be Axisymmetric

    Get PDF
    A key result in the proof of black hole uniqueness in 4-dimensions is that a stationary black hole that is ``rotating''--i.e., is such that the stationary Killing field is not everywhere normal to the horizon--must be axisymmetric. The proof of this result in 4-dimensions relies on the fact that the orbits of the stationary Killing field on the horizon have the property that they must return to the same null geodesic generator of the horizon after a certain period, PP. This latter property follows, in turn, from the fact that the cross-sections of the horizon are two-dimensional spheres. However, in spacetimes of dimension greater than 4, it is no longer true that the orbits of the stationary Killing field on the horizon must return to the same null geodesic generator. In this paper, we prove that, nevertheless, a higher dimensional stationary black hole that is rotating must be axisymmetric. No assumptions are made concerning the topology of the horizon cross-sections other than that they are compact. However, we assume that the horizon is non-degenerate and, as in the 4-dimensional proof, that the spacetime is analytic.Comment: 24 pages, no figures, v2: footnotes and references added, v3: numerous minor revision

    A novel method for sampling the suspended sediment load in the tidal environment using bi-directional time-integrated mass-flux sediment (TIMS) samplers

    Get PDF
    Identifying the source and abundance of sediment transported within tidal creeks is essential for studying the connectivity between coastal watersheds and estuaries. The fine-grained suspended sediment load (SSL) makes up a substantial portion of the total sediment load carried within an estuarine system and efficient sampling of the SSL is critical to our understanding of nutrient and contaminant transport, anthropogenic influence, and the effects of climate. Unfortunately, traditional methods of sampling the SSL, including instantaneous measurements and automatic samplers, can be labor intensive, expensive and often yield insufficient mass for comprehensive geochemical analysis. In estuaries this issue is even more pronounced due to bi-directional tidal flow. This study tests the efficacy of a time-integrated mass sediment sampler (TIMS) design, originally developed for uni-directional flow within the fluvial environment, modified in this work for implementation the tidal environment under bi-directional flow conditions. Our new TIMS design utilizes an ‘L’ shaped outflow tube to prevent backflow, and when deployed in mirrored pairs, each sampler collects sediment uniquely in one direction of tidal flow. Laboratory flume experiments using dye and particle image velocimetry (PIV) were used to characterize the flow within the sampler, specifically, to quantify the settling velocities and identify stagnation points. Further laboratory tests of sediment indicate that bidirectional TIMS capture up to 96% of incoming SSL across a range of flow velocities (0.3–0.6 m s−1). The modified TIMS design was tested in the field at two distinct sampling locations within the tidal zone. Single-time point suspended sediment samples were collected at high and low tide and compared to time-integrated suspended sediment samples collected by the bi-directional TIMS over the same four-day period. Particle-size composition from the bi-directional TIMS were representative of the array of single time point samples, but yielded greater mass, representative of flow and sediment-concentration conditions at the site throughout the deployment period. This work proves the efficacy of the modified bi-directional TIMS design, offering a novel tool for collection of suspended sediment in the tidally-dominated portion of the watershed

    On the `Stationary Implies Axisymmetric' Theorem for Extremal Black Holes in Higher Dimensions

    Full text link
    All known stationary black hole solutions in higher dimensions possess additional rotational symmetries in addition to the stationary Killing field. Also, for all known stationary solutions, the event horizon is a Killing horizon, and the surface gravity is constant. In the case of non-degenerate horizons (non-extremal black holes), a general theorem was previously established [gr-qc/0605106] proving that these statements are in fact generally true under the assumption that the spacetime is analytic, and that the metric satisfies Einstein's equation. Here, we extend the analysis to the case of degenerate (extremal) black holes. It is shown that the theorem still holds true if the vector of angular velocities of the horizon satisfies a certain "diophantine condition," which holds except for a set of measure zero.Comment: 30pp, Latex, no figure

    Nitrogen Response and Economics for Irrigated Corn in Nebraska

    Get PDF
    Nitrogen management recommendations may change as yield levels and efficiency of crop production increase. The mean yield with adequate nutrient availability in 32 irrigated corn (Zea mays L.) trials conducted across Nebraska to evaluate crop response to split-applied N was 14.8 Mg per ha. The mean economically optimal N rates (EONR) for irrigated corn varied with the fertilizer N to grain price ratio. At a fertilizer N:corn price ratio of 7, the EONR was 171, 122, and 93 kg per hectare, respectively, for cropping systems with corn following corn (CC), soybean (Glycine max L.) (CS), and drybean (Phaseolus vulgaris L.) (CD). At this price ratio the present University of Nebraska (UNL) recommendation procedure gave mean N recommendations that were 17.2, 0.3, and 68.1 kg per hectare higher than the mean EONR determined in this study for CC, CS, and CD, respectively. The UNL algorithm, adjusted for mean cropping system EONR gave more accurate prediction of site-year EONR than alternative N rate predictions for CC and CD with returns to applied N (RTN) of -22and22 and -13 per hectare compared with measured site-year EONR. Prediction of site-year EONR using mean EONR adjusted for soil organic matter was more accurate for CS than other methods with an RTN of -$6 per hectare compared with measured site-year EONR. Further research is needed to extend the results to: lower yield situations, alternatives to split application of N, and adjustment of EONR to protect against inadequate N in atypical seasons or for environmental protection

    High-yielding corn response to applied phosphorus, potassium, and sulfur in Nebraska

    Get PDF
    Nutrient management recommendations may change as yield levels and efficiency of crop production increase. Recommendations for P, K, and S were evaluated using results from 34 irrigated corn (Zea mays L.) trials conducted in diverse situations across Nebraska. The mean yield was 14.7 Mg ha–1 with adequate fertilizer applied. The median harvest index values were 0.52, 0.89, 0.15, and 0.56 for biomass, P, K, and S, respectively. Median grain yields were 372, 49, and 613 kg kg–1 of aboveground plant uptake of P, K, and S, respectively. The estimated critical Bray-1 P level for corn response to 20 kg P ha–1 was 20 mg kg–1 when the previous crop was corn compared with 10 mg kg–1 when corn followed soybean [Glycine max (L.) Merr.]. Soil test K was generally high with only three site-years <125 mg kg–1. Over all trials, application of 40 kg K ha–1 resulted in a 0.2 Mg ha–1 mean grain yield decrease. Application of 22 kg S ha–1 did not result in significant yield increase in any trial. Soil test results accounted for twice as much variation in nutrient uptake when soil organic matter (SOM) and pH were considered in addition to the soil test nutrient values. The results indicate a need to revise the current recommendation for P, to maintain the current K and S recommendations, and to use SOM and pH in addition to soil test nutrient values in estimating applied nutrient requirements for irrigated high yield corn production

    Nitrogen Use Efficiency of Irrigated Corn for Three Cropping Systems in Nebraska

    Get PDF
    Nitrogen use efficiency (NUE) is of economic and environmental importance. Components of NUE were evaluated in 32 irrigated corn (Zea mays L.) trials conducted across Nebraska with different N rates and where the previous crop was either corn (CC), drybean (Phaseolus vulgaris L.) (CD), or soybean (Glycine max L.) (CS). The mean grain yield with adequate nutrient availability was 14.7 Mg ha–1 . When no N was applied, measured soil properties and irrigation water N accounted for <20% of the variation in plant N uptake (UN). Mean fertilizer N recovery in above-ground biomass was 74% at the lowest N rate compared with 40% at the highest N rate, a mean of 64% at the economically optimal N rate (EONR), and least with CD. Agronomic efficiency of fertilizer N averaged 29 kg grain kg-1 N at EONR and was also least with CD. Partial factor productivity of N averaged 100 kg grain kg-1 N at EONR, and was greater with CS compared with CC and CD. After harvest, residual soil nitrate-N (RSN) in the 0 to 1.2 m depth ranged from 21 to 121 kg ha-1 and increased with N rate. Mean RSN was 88, 59, and 59 kg ha-1 for CD, CC, and CS, respectively. High corn yields can be achieved with high NUE and low RSN by management to maximize profitability in consideration of yield potential, and by applying N at the right amount and time

    Immunohistochemical, ultrastructural and functional analysis of axonal regeneration through peripheral nerve grafts containing Schwann cells expressing BDNF, CNTF or NT3

    Get PDF
    Objective  To establish reference values for activated coagulation time (ACT) in normal cats and dogs, by visual assessment of clot formation using the MAX-ACTTM tube. Subjects  We recruited 43 cats and 50 dogs for the study; 11 cats and 4 dogs were excluded from the statistical analysis because of abnormalities on clinical examination or laboratory testing including anaemia, prolonged prothrombin time (PT) or activated partial thromboplastin time (APTT), or insufficient plasma volume for comprehensive laboratory coagulation testing. Procedure  Blood samples were collected via direct venipuncture for MAX-ACT, packed cell volume/total solids, manual platelet estimation and PT/APTT measurement. Blood (0.5 mL) was mixed gently in the MAX-ACT tube at 37°C for 30 s, then assessed for clot formation every 5 to 10 s by tipping the tube gently on its side and monitoring for magnet movement. The endpoint was defined as the magnet lodging in the clot. The technique was tested with 10 dogs by collecting two blood samples from the same needle insertion and running a MAX-ACT on each simultaneously. Results  In normal cats the mean MAX-ACT was 66 s (range 55–85 s). In normal dogs the mean was 71 s (range 55–80 s). There was no statistical difference between the first and second samples collected from the same needle insertion. Conclusions and Clinical Relevance  In both cats and dogs, a MAX-ACT result >85 s should be considered abnormal and further coagulation testing should be performed. Additionally, failure to discard the first few drops of the sample does not appear to significantly affect results

    Identification of common genetic risk variants for autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.Peer reviewe

    Associations of autozygosity with a broad range of human phenotypes

    Get PDF
    In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (F-ROH) for >1.4 million individuals, we show that F-ROH is significantly associated (p <0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: F-ROH equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44-66%] in the odds of having children. Finally, the effects of F-ROH are confirmed within full-sibling pairs, where the variation in F-ROH is independent of all environmental confounding.Peer reviewe
    corecore