316 research outputs found

    Interference and interaction effects in multi-level quantum dots

    Full text link
    Using renormalization group techniques, we study spectral and transport properties of a spinless interacting quantum dot consisting of two levels coupled to metallic reservoirs. For strong Coulomb repulsion UU and an applied Aharonov-Bohm phase ϕ\phi, we find a large direct tunnel splitting Δ(Γ/π)cos(ϕ/2)ln(U/ωc)|\Delta|\sim (\Gamma/\pi)|\cos(\phi/2)|\ln(U/\omega_c) between the levels of the order of the level broadening Γ\Gamma. As a consequence we discover a many-body resonance in the spectral density that can be measured via the absorption power. Furthermore, for ϕ=π\phi=\pi, we show that the system can be tuned into an effective Anderson model with spin-dependent tunneling.Comment: 5 pages, 4 figures included, typos correcte

    Interference in interacting quantum dots with spin

    Full text link
    We study spectral and transport properties of interacting quantum dots with spin. Two particular model systems are investigated: Lateral multilevel and two parallel quantum dots. In both cases different paths through the system can give rise to interference. We demonstrate that this strengthens the multilevel Kondo effect for which a simple two-stage mechanism is proposed. In parallel dots we show under which conditions the peak of an interference-induced orbital Kondo effect can be split.Comment: 8 pages, 8 figure

    Parity Violating Measurements of Neutron Densities

    Get PDF
    Parity violating electron nucleus scattering is a clean and powerful tool for measuring the spatial distributions of neutrons in nuclei with unprecedented accuracy. Parity violation arises from the interference of electromagnetic and weak neutral amplitudes, and the Z0Z^0 of the Standard Model couples primarily to neutrons at low Q2Q^2. The data can be interpreted with as much confidence as electromagnetic scattering. After briefly reviewing the present theoretical and experimental knowledge of neutron densities, we discuss possible parity violation measurements, their theoretical interpretation, and applications. The experiments are feasible at existing facilities. We show that theoretical corrections are either small or well understood, which makes the interpretation clean. The quantitative relationship to atomic parity nonconservation observables is examined, and we show that the electron scattering asymmetries can be directly applied to atomic PNC because the observables have approximately the same dependence on nuclear shape.Comment: 38 pages, 7 ps figures, very minor changes, submitted to Phys. Rev.

    Agreements between Industry and Academia on Publication Rights: A Retrospective Study of Protocols and Publications of Randomized Clinical Trials.

    Get PDF
    BACKGROUND: Little is known about publication agreements between industry and academic investigators in trial protocols and the consistency of these agreements with corresponding statements in publications. We aimed to investigate (i) the existence and types of publication agreements in trial protocols, (ii) the completeness and consistency of the reporting of these agreements in subsequent publications, and (iii) the frequency of co-authorship by industry employees. METHODS AND FINDINGS: We used a retrospective cohort of randomized clinical trials (RCTs) based on archived protocols approved by six research ethics committees between 13 January 2000 and 25 November 2003. Only RCTs with industry involvement were eligible. We investigated the documentation of publication agreements in RCT protocols and statements in corresponding journal publications. Of 647 eligible RCT protocols, 456 (70.5%) mentioned an agreement regarding publication of results. Of these 456, 393 (86.2%) documented an industry partner's right to disapprove or at least review proposed manuscripts; 39 (8.6%) agreements were without constraints of publication. The remaining 24 (5.3%) protocols referred to separate agreement documents not accessible to us. Of those 432 protocols with an accessible publication agreement, 268 (62.0%) trials were published. Most agreements documented in the protocol were not reported in the subsequent publication (197/268 [73.5%]). Of 71 agreements reported in publications, 52 (73.2%) were concordant with those documented in the protocol. In 14 of 37 (37.8%) publications in which statements suggested unrestricted publication rights, at least one co-author was an industry employee. In 25 protocol-publication pairs, author statements in publications suggested no constraints, but 18 corresponding protocols documented restricting agreements. CONCLUSIONS: Publication agreements constraining academic authors' independence are common. Journal articles seldom report on publication agreements, and, if they do, statements can be discrepant with the trial protocol

    Prevalence, characteristics, and publication of discontinued randomized trials.

    Get PDF
    IMPORTANCE: The discontinuation of randomized clinical trials (RCTs) raises ethical concerns and often wastes scarce research resources. The epidemiology of discontinued RCTs, however, remains unclear. OBJECTIVES: To determine the prevalence, characteristics, and publication history of discontinued RCTs and to investigate factors associated with RCT discontinuation due to poor recruitment and with nonpublication. DESIGN AND SETTING: Retrospective cohort of RCTs based on archived protocols approved by 6 research ethics committees in Switzerland, Germany, and Canada between 2000 and 2003. We recorded trial characteristics and planned recruitment from included protocols. Last follow-up of RCTs was April 27, 2013. MAIN OUTCOMES AND MEASURES: Completion status, reported reasons for discontinuation, and publication status of RCTs as determined by correspondence with the research ethics committees, literature searches, and investigator surveys. RESULTS: After a median follow-up of 11.6 years (range, 8.8-12.6 years), 253 of 1017 included RCTs were discontinued (24.9% [95% CI, 22.3%-27.6%]). Only 96 of 253 discontinuations (37.9% [95% CI, 32.0%-44.3%]) were reported to ethics committees. The most frequent reason for discontinuation was poor recruitment (101/1017; 9.9% [95% CI, 8.2%-12.0%]). In multivariable analysis, industry sponsorship vs investigator sponsorship (8.4% vs 26.5%; odds ratio [OR], 0.25 [95% CI, 0.15-0.43]; P < .001) and a larger planned sample size in increments of 100 (-0.7%; OR, 0.96 [95% CI, 0.92-1.00]; P = .04) were associated with lower rates of discontinuation due to poor recruitment. Discontinued trials were more likely to remain unpublished than completed trials (55.1% vs 33.6%; OR, 3.19 [95% CI, 2.29-4.43]; P < .001). CONCLUSIONS AND RELEVANCE: In this sample of trials based on RCT protocols from 6 research ethics committees, discontinuation was common, with poor recruitment being the most frequently reported reason. Greater efforts are needed to ensure the reporting of trial discontinuation to research ethics committees and the publication of results of discontinued trials

    PAB3D: Its History in the Use of Turbulence Models in the Simulation of Jet and Nozzle Flows

    Get PDF
    This is a review paper for PAB3D s history in the implementation of turbulence models for simulating jet and nozzle flows. We describe different turbulence models used in the simulation of subsonic and supersonic jet and nozzle flows. The time-averaged simulations use modified linear or nonlinear two-equation models to account for supersonic flow as well as high temperature mixing. Two multiscale-type turbulence models are used for unsteady flow simulations. These models require modifications to the Reynolds Averaged Navier-Stokes (RANS) equations. The first scheme is a hybrid RANS/LES model utilizing the two-equation (k-epsilon) model with a RANS/LES transition function, dependent on grid spacing and the computed turbulence length scale. The second scheme is a modified version of the partially averaged Navier-Stokes (PANS) formulation. All of these models are implemented in the three-dimensional Navier-Stokes code PAB3D. This paper discusses computational methods, code implementation, computed results for a wide range of nozzle configurations at various operating conditions, and comparisons with available experimental data. Very good agreement is shown between the numerical solutions and available experimental data over a wide range of operating conditions

    New γ -ray transitions observed in Ne 19 with implications for the O 15 (α,γ) Ne 19 reaction rate

    Get PDF
    The O15(α,γ)Ne19 reaction is responsible for breakout from the hot CNO cycle in type I x-ray bursts. Understanding the properties of resonances between Ex=4 and 5 MeV in Ne19 is crucial in the calculation of this reaction rate. The spins and parities of these states are well known, with the exception of the 4.14- and 4.20-MeV states, which have adopted spin-parities of 9/2- and 7/2-, respectively. γ-ray transitions from these states were studied using triton-γ-γ coincidences from the F19(He3,tγ)Ne19 reaction measured with the GODDESS (Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies) at Argonne National Laboratory. The observed transitions from the 4.14- and 4.20-MeV states provide strong evidence that the Jπ values are actually 7/2- and 9/2-, respectively. These assignments are consistent with the values in the F19 mirror nucleus and in contrast to previously accepted assignments

    γ -ray spectroscopy of astrophysically important states in Ca 39

    Get PDF
    Background: Nova explosions synthesize elements up to A≃40, and discrepancies exist between calculated and observed abundances of Ar and Ca created in the explosion. The K38(p,γ)Ca39 reaction rate has been shown to be influential on these isotopic abundances at the endpoint of nova nucleosynthesis. The energies of the three most important resonances, corresponding to Jπ=5/2+ excited states in the Ca39 nucleus above the proton separation threshold, are uncertain and one has been measured with conflicting values [Er=679(2) versus Er=701(2) keV] in previous experiments. Purpose: Reducing the uncertainties on the resonance energies would allow for a better understanding of the reaction rate. To improve these uncertainties, we searched for γ rays from the depopulation of the corresponding excited states in Ca39. Methods: We report a new measurement of these resonance energies via the observation of previously unobserved γ-ray transitions. These transitions were observed by studying the Ca40(3He,αγ)Ca39 reaction with Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies (GODDESS). The updated resonance energies were then used to calculate the K38(p,γ)Ca39 reaction rate and assess its uncertainties. Results: In total, 23 new transitions were found, including three γ-ray transitions corresponding to the three Jπ=5/2+ states of astrophysical interest at energies of 6156.2(16), 6268.8(22), and 6470.8(19) keV. These correspond to resonance energies in the K38(p,γ)Ca39 reaction of 386(2), 498(2), and 701(2) keV. Conclusions: Updated K38(p,γ)Ca39 reaction rate calculations show a reduced upper limit at nova temperatures. However, the lower-than-previously-measured energy of the 498-keV resonance and uncertainty in its resonance strength increases the upper limit of the rate close to previous estimates at 0.4 GK

    Stomatal responses of Eucalyptus species to elevated CO2 concentration and drought stress

    Get PDF
    Five species of Eucalyptus (E. grandis, E. urophylla, E. camaldulensis, E. torelliana, and E. phaeotrica), among the ten species most commonly used in large scale plantations, were selected for studies on the effects of elevated CO2 concentration [CO2] and drought stress on stomatal responses of 2.5-month old seedlings. The first three species belong to the subgenus Smphyomyrtus, whereas the fourth species belongs to the subgenus Corymbia and E. phaeotrica is from the subgenus Monocalyptus. Seedlings were grown in four pairs of open-top chambers, arranged to have 2 plants of each species in each chamber, with four replications in each of two CO2 concentrations: 350 ± 30 mumol mol-1 and 700 ± 30 mumol mol-1. After 100 days in the chambers, a series of gas exchange measurements were made. Half the plants in each chamber, one plant per species per chamber, were drought-stressed by withholding irrigation, while the remaining plants continued to be watered daily. Drought stress decreased stomatal conductance, photosynthesis and transpiration rates in all the species. The effect of drought stress on stomatal closure was similar in both [CO2]. The positive effects of elevated [CO2] on photosynthesis and water use efficiency were maintained longer during the stress period than under well-watered conditions. The photosynthetic rate of E. phaeotrica was higher even in the fourth day of the drought stress. Drought stress increased photoinhibition of photosynthesis, as measured by chlorophyll fluorescence, which varied among the species, as well as in relation to [CO2]. The results are in agreement with observed differences in stomatal responses between some eucalyptus species of the subgenera Symphyomyrtus and Monocalyptus

    A global spectral library to characterize the world's soil

    Get PDF
    Soil provides ecosystem services, supports human health and habitation, stores carbon and regulates emissions of greenhouse gases. Unprecedented pressures on soil from degradation and urbanization are threatening agro-ecological balances and food security. It is important that we learn more about soil to sustainably manage and preserve it for future generations. To this end, we developed and analyzed a global soil visible-near infrared (vis-NIR) spectral library. It is currently the largest and most diverse database of its kind. We show that the information encoded in the spectra can describe soil composition and be associated to land cover and its global geographic distribution, which acts as a surrogate for global climate variability. We also show the usefulness of the global spectra for predicting soil attributes such as soil organic and inorganic carbon, clay, silt, sand and iron contents, cation exchange capacity, and pH. Using wavelets to treat the spectra, which were recorded in different laboratories using different spectrometers and methods, helped to improve the spectroscopic modelling. We found that modelling a diverse set of spectra with a machine learning algorithm can find the local relationships in the data to produce accurate predictions of soil properties. The spectroscopic models that we derived are parsimonious and robust, and using them we derived a harmonized global soil attribute dataset, which might serve to facilitate research on soil at the global scale. This spectroscopic approach should help to deal with the shortage of data on soil to better understand it and to meet the growing demand for information to assess and monitor soil at scales ranging from regional to global. New contributions to the library are encouraged so that this work and our collaboration might progress to develop a dynamic and easily updatable database with better global coverage. We hope that this work will reinvigorate our community's discussion towards larger, more coordinated collaborations. We also hope that use of the database will deepen our understanding of soil so that we might sustainably manage it and extend the research outcomes of the soil, earth and environmental sciences towards applications that we have not yet dreamed of
    corecore