2,431 research outputs found
Partial purification of alpha-amylase from culture supernatant of Bacillus subtilis in aqueous two-phase systems
The original publication can be found at www.springerlink.comA study was made of the partition and purification of -amylase from a culture supernatant of Bacillus subtilis in the polyethylene glycol (PEG)—citrate aqueous two-phase system (ATPS). Factors that influenced the partition of the protein in this system, including the molecular weight of the PEG, the tie line length of ATPS, the pH value and the sodium chloride concentration, were investigated. Purification of -amylase was attained with a purification factor (PF) of 1.8 and 90% yield at pH 6.0 in a PEG1000-citrate ATPS with short tie line length. By utilizing the salt-out effect of neutral salt, the purification of -amylase was further improved to 2.0 of PF and 80% yield in a PEG3350-citrate ATPS with 4% sodium chloride.Wenbo Zhi, Jiangnan Song, Jingxiu Bi and Fan Ouyan
Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand-dependent activation of defense responses
Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistance to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components
The phylogenetically-related pattern recognition receptors EFR and XA21 recruit similar immune signaling components in monocots and dicots
During plant immunity, surface-localized pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs). The transfer of PRRs between plant species is a promising strategy for engineering broad-spectrum disease resistance. Thus, there is a great interest in understanding the mechanisms of PRR-mediated resistance across different plant species. Two well-characterized plant PRRs are the leucine-rich repeat receptor kinases (LRR-RKs) EFR and XA21 from Arabidopsis thaliana (Arabidopsis) and rice, respectively. Interestingly, despite being evolutionary distant, EFR and XA21 are phylogenetically closely related and are both members of the sub-family XII of LRR-RKs that contains numerous potential PRRs. Here, we compared the ability of these related PRRs to engage immune signaling across the monocots-dicots taxonomic divide. Using chimera between Arabidopsis EFR and rice XA21, we show that the kinase domain of the rice XA21 is functional in triggering elf18-induced signaling and quantitative immunity to the bacteria Pseudomonas syringae pv. tomato (Pto) DC3000 and Agrobacterium tumefaciens in Arabidopsis. Furthermore, the EFR:XA21 chimera associates dynamically in a ligand-dependent manner with known components of the EFR complex. Conversely, EFR associates with Arabidopsis orthologues of rice XA21-interacting proteins, which appear to be involved in EFR-mediated signaling and immunity in Arabidopsis. Our work indicates the overall functional conservation of immune components acting downstream of distinct LRR-RK-type PRRs between monocots and dicots
Set optimization - a rather short introduction
Recent developments in set optimization are surveyed and extended including
various set relations as well as fundamental constructions of a convex analysis
for set- and vector-valued functions, and duality for set optimization
problems. Extensive sections with bibliographical comments summarize the state
of the art. Applications to vector optimization and financial risk measures are
discussed along with algorithmic approaches to set optimization problems
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
3D Direct Printing of Silicone Meniscus Implant Using a Novel Heat-Cured Extrusion-Based Printer
The first successful direct 3D printing, or additive manufacturing (AM), of heat-cured silicone meniscal implants, using biocompatible and bio-implantable silicone resins is reported. Silicone implants have conventionally been manufactured by indirect silicone casting and molding methods which are expensive and time-consuming. A novel custom-made heat-curing extrusion-based silicone 3D printer which is capable of directly 3D printing medical silicone implants is introduced. The rheological study of silicone resins and the optimization of critical process parameters are described in detail. The surface and cross-sectional morphologies of the printed silicone meniscus implant were also included. A time-lapsed simulation study of the heated silicone resin within the nozzle using computational fluid dynamics (CFD) was done and the results obtained closely resembled real time 3D printing. Solidworks one-convection model simulation, when compared to the on-off model, more closely correlated with the actual probed temperature. Finally, comparative mechanical study between 3D printed and heat-molded meniscus is conducted. The novel 3D printing process opens up the opportunities for rapid 3D printing of various customizable medical silicone implants and devices for patients and fills the current gap in the additive manufacturing industry
The contribution of PA-X to the virulence of pandemic 2009 H1N1 and highly pathogenic H5N1 avian influenza viruses
PA-X is a novel protein encoded by PA mRNA and is found to decrease the pathogenicity of pandemic 1918 H1N1 virus in mice. However, the importance of PA-X proteins in current epidemiologically important influenza A virus strains is not known. In this study, we report on the pathogenicity and pathological effects of PA-X deficient 2009 pandemic H1N1 (pH1N1) and highly pathogenic avian influenza H5N1 viruses. We found that loss of PA-X expression in pH1N1 and H5N1 viruses increased viral replication and apoptosis in A549 cells and increased virulence and host inflammatory response in mice. In addition, PA-X deficient pH1N1 and H5N1 viruses up-regulated PA mRNA and protein synthesis and increased viral polymerase activity. Loss of PA-X was also accompanied by accelerated nuclear accumulation of PA protein and reduced suppression of PA on non-viral protein expression. Our study highlights the effects of PA-X on the moderation of viral pathogenesis and pathogenicity
Autoimmunity-Associated LYP-W620 Does Not Impair Thymic Negative Selection of Autoreactive T Cells.
A C1858T (R620W) variation in the PTPN22 gene encoding the tyrosine phosphatase LYP is a major risk factor for human autoimmunity. LYP is a known negative regulator of signaling through the T cell receptor (TCR), and murine Ptpn22 plays a role in thymic selection. However, the mechanism of action of the R620W variant in autoimmunity remains unclear. One model holds that LYP-W620 is a gain-of-function phosphatase that causes alterations in thymic negative selection and/or thymic output of regulatory T cells (Treg) through inhibition of thymic TCR signaling. To test this model, we generated mice in which the human LYP-W620 variant or its phosphatase-inactive mutant are expressed in developing thymocytes under control of the proximal Lck promoter. We found that LYP-W620 expression results in diminished thymocyte TCR signaling, thus modeling a "gain-of-function" of LYP at the signaling level. However, LYP-W620 transgenic mice display no alterations of thymic negative selection and no anomalies in thymic output of CD4(+)Foxp3(+) Treg were detected in these mice. Lck promoter-directed expression of the human transgene also causes no alteration in thymic repertoire or increase in disease severity in a model of rheumatoid arthritis, which depends on skewed thymic selection of CD4(+) T cells. Our data suggest that a gain-of-function of LYP is unlikely to increase risk of autoimmunity through alterations of thymic selection and that LYP likely acts in the periphery perhaps selectively in regulatory T cells or in another cell type to increase risk of autoimmunity
Cdk5 Is Required for Memory Function and Hippocampal Plasticity via the cAMP Signaling Pathway
Memory formation is modulated by pre- and post-synaptic signaling events in neurons. The neuronal protein kinase Cyclin-Dependent Kinase 5 (Cdk5) phosphorylates a variety of synaptic substrates and is implicated in memory formation. It has also been shown to play a role in homeostatic regulation of synaptic plasticity in cultured neurons. Surprisingly, we found that Cdk5 loss of function in hippocampal circuits results in severe impairments in memory formation and retrieval. Moreover, Cdk5 loss of function in the hippocampus disrupts cAMP signaling due to an aberrant increase in phosphodiesterase (PDE) proteins. Dysregulation of cAMP is associated with defective CREB phosphorylation and disrupted composition of synaptic proteins in Cdk5-deficient mice. Rolipram, a PDE4 inhibitor that prevents cAMP depletion, restores synaptic plasticity and memory formation in Cdk5-deficient mice. Collectively, our results demonstrate a critical role for Cdk5 in the regulation of cAMP-mediated hippocampal functions essential for synaptic plasticity and memory formation.Norman B. Leventhal FellowshipUnited States. National Institutes of Health (NIH T32 MH074249)United States. National Institutes of Health (NIH RO1 NS051874
3D Printed Silicone Meniscus Implants: Influence of the 3D Printing Process on Properties of Silicone Implants
Osteoarthritis of the knee with meniscal pathologies is a severe meniscal pathology suffered by the aging population worldwide. However, conventional meniscal substitutes are not 3D-printable and lack the customizability of 3D printed implants and are not mechanically robust enough for human implantation. Similarly, 3D printed hydrogel scaffolds suffer from drawbacks of being mechanically weak and as a result patients are unable to execute immediate post-surgical weight-bearing ambulation and rehabilitation. To solve this problem, we have developed a 3D silicone meniscus implant which is (1) cytocompatible, (2) resistant to cyclic loading and mechanically similar to native meniscus, and (3) directly 3D printable. The main focus of this study is to determine whether the purity, composition, structure, dimensions and mechanical properties of silicone implants are affected by the use of a custom-made in-house 3D-printer. We have used the phosphate buffer saline (PBS) absorption test, Fourier transform infrared (FTIR) spectroscopy, surface profilometry, thermo-gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) to effectively assess and compare material properties between molded and 3D printed silicone samples
- …
