59 research outputs found

    Gold slows down the growth of helium bubble in iron

    Full text link
    We predict by first-principles calculations that Au have strong affinity to He in bcc Fe. The Au-Au bonding in the segregated Au layer at the He bubble surface is stronger than Fe-Fe and Au-Fe interactions; therefore this layer becomes an effective barrier to further He and slows down the bubble growth.Comment: 9 pages, 4 figures, 1 tabl

    Role of grain boundary and dislocation loop in H blistering in W: A Density functional theory assessment

    Full text link
    We report a first-principles density functional theory study on the role of grain boundary and dislocation loop in H blistering in W. At low temperature, the {\Sugma}3(111) tilt grain boundary, when combined with a vacancy of vanishing formation energy, can trap up to nine H atoms per (1x1) unit in (111) plane. This amount of H weakens the cohesion across the boundary to an extent that a cleavage along the GB is already exothermic. At high temperature, this effect can be still significant. For an infinitely large dislocation loop in (100) plane, four H can be trapped per (1x1) unit even above room temperature, incurring a decohesion strong enough to break the crystal. Our numerical results demonstrate unambiguously the grain boundaries and dislocation loops can serve as precursors of H blistering. In addition, no H2 molecules can be formed in either environment before fracture of W bonds starts, well explaining the H blistering in the absence of voids during non-damaging irradiation.Comment: 15 pages, 5 figure

    Threshold concentration for H blistering in defect free W

    Full text link
    Lattice distortion induced by high concentration of H is believed to be precursor of H blistering in single crystalline W (SCW) during H isotope irradiation. However, the critical H concentration needed to trigger bond-breaking of metal atoms presents a challenge to measure. Using density functional theory, we have calculated the formation energy of a vacancy and a self-interstitial atom (SIA) in supersaturated defect-free SCW with various H concentrations. When the ratio of H:W exceeds 1:2, the formation of both vacancies and self-interstitials becomes exothermic, meaning that spontaneous formation of micro-voids which can accommodate molecular H2 will occur. Molecular H2 is not allowed to form, and it is not needed either at the very initial stage of H blistering in SCW. With supersaturated H, the free volume at the vacancy or SIA is greatly smeared out with severe lattice distortion and more H can be trapped than in the dilute H case.Comment: 13 pages, 4 figure

    Ab initio Calculations of Multilayer Relaxations of Stepped Cu Surfaces

    Full text link
    We present trends in the multilayer relaxations of several vicinals of Cu(100) and Cu(111) of varying terrace widths and geometry. The electronic structure calculations are based on density functional theory in the local density approximation with norm-conserving, non-local pseudopotentials in the mixed basis representation. While relaxations continue for several layers, the major effect concentrates near the step and corner atoms. On all surfaces the step atoms contract inwards, in agreement with experimental findings. Additionally, the corner atoms move outwards and the atoms in the adjacent chain undergo large inward relaxation. Correspondingly, the largest contraction (4%) is in the bond length between the step atom and its bulk nearest neighbor (BNN), while that between the corner atom and BNN is somewhat enlarged. The surface atoms also display changes in registry of upto 1.5%. Our results are in general in good agreement with LEED data including the controversial case of Cu(511). Subtle differences are found with results obtained from semi-empirical potentials.Comment: 21 pages and 3 figure

    Large-scale magnetic fields from inflation due to a CPTCPT-even Chern-Simons-like term with Kalb-Ramond and scalar fields

    Full text link
    We investigate the generation of large-scale magnetic fields due to the breaking of the conformal invariance in the electromagnetic field through the CPTCPT-even dimension-six Chern-Simons-like effective interaction with a fermion current by taking account of the dynamical Kalb-Ramond and scalar fields in inflationary cosmology. It is explicitly demonstrated that the magnetic fields on 1Mpc scale with the field strength of 109\sim 10^{-9}G at the present time can be induced.Comment: 18 pages, 6 figures, version accepted for publication in Eur. Phys. J.

    Magnetic moments of the low-lying {1/2}^- octet baryon resonances

    Full text link
    The magnetic moments of the negative parity octet resonances with spin {1/2}: NN^*(1535), NN^*(1650), Σ\Sigma^*(1620), and Ξ\Xi^*(1690) have been calculated within the framework of the chiral constituent quark model. In this approach, the presence of the polarized qqˉq\bar{q} pairs (or the meson cloud, in other words) is considered by using the Lagrangian for Goldstone boson emission from the constituent quarks. Further, the explicit contributions coming from the spin and orbital angular momentum, including the effects of the configurations mixing between the states with different spins, are obtained. The motivation for these calculations comes from the recent interest in experimental measurement of the magnetic moment of the S11(1535){S_{11}(1535)} resonance and of similar calculations being done within lattice quantum chromodynamics approaches. Our results can be compared with those expected to come from these sources.Comment: 17 pages, 2 table

    Searches for lepton-flavour-violating decays of the Higgs boson in s=13\sqrt{s}=13 TeV pp\mathit{pp} collisions with the ATLAS detector

    Get PDF
    This Letter presents direct searches for lepton flavour violation in Higgs boson decays, H → eτ and H → μτ , performed with the ATLAS detector at the LHC. The searches are based on a data sample of proton–proton collisions at a centre-of-mass energy √s = 13 TeV, corresponding to an integrated luminosity of 36.1 fb−1. No significant excess is observed above the expected background from Standard Model processes. The observed (median expected) 95% confidence-level upper limits on the leptonflavour-violating branching ratios are 0.47% (0.34+0.13−0.10%) and 0.28% (0.37+0.14−0.10%) for H → eτ and H → μτ , respectively.publishedVersio

    Combination of searches for Higgs boson pairs in pp collisions at \sqrts = 13 TeV with the ATLAS detector

    Get PDF
    This letter presents a combination of searches for Higgs boson pair production using up to 36.1 fb(-1) of proton-proton collision data at a centre-of-mass energy root s = 13 TeV recorded with the ATLAS detector at the LHC. The combination is performed using six analyses searching for Higgs boson pairs decaying into the b (b) over barb (b) over bar, b (b) over barW(+)W(-), b (b) over bar tau(+)tau(-), W+W-W+W-, b (b) over bar gamma gamma and W+W-gamma gamma final states. Results are presented for non-resonant and resonant Higgs boson pair production modes. No statistically significant excess in data above the Standard Model predictions is found. The combined observed (expected) limit at 95% confidence level on the non-resonant Higgs boson pair production cross-section is 6.9 (10) times the predicted Standard Model cross-section. Limits are also set on the ratio (kappa(lambda)) of the Higgs boson self-coupling to its Standard Model value. This ratio is constrained at 95% confidence level in observation (expectation) to -5.0 &lt; kappa(lambda) &lt; 12.0 (-5.8 &lt; kappa(lambda) &lt; 12.0). In addition, limits are set on the production of narrow scalar resonances and spin-2 Kaluza-Klein Randall-Sundrum gravitons. Exclusion regions are also provided in the parameter space of the habemus Minimal Supersymmetric Standard Model and the Electroweak Singlet Model. For complete list of authors see http://dx.doi.org/10.1016/j.physletb.2019.135103</p

    Search for flavour-changing neutral currents in processes with one top quark and a photon using 81 fb⁻¹ of pp collisions at \sqrts = 13 TeV with the ATLAS experiment

    Get PDF
    A search for flavour-changing neutral current (FCNC) events via the coupling of a top quark, a photon, and an up or charm quark is presented using 81 fb−1 of proton–proton collision data taken at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Events with a photon, an electron or muon, a b-tagged jet, and missing transverse momentum are selected. A neural network based on kinematic variables differentiates between events from signal and background processes. The data are consistent with the background-only hypothesis, and limits are set on the strength of the tqγ coupling in an effective field theory. These are also interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tuγ coupling of 36 fb (78 fb) and on the branching ratio for t→γu of 2.8×10−5 (6.1×10−5). In addition, they are interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tcγ coupling of 40 fb (33 fb) and on the branching ratio for t→γc of 22×10−5 (18×10−5). © 2019 The Author(s
    corecore