1,246 research outputs found

    FPGA-accelerated machine learning inference as a service for particle physics computing

    Full text link
    New heterogeneous computing paradigms on dedicated hardware with increased parallelization, such as Field Programmable Gate Arrays (FPGAs), offer exciting solutions with large potential gains. The growing applications of machine learning algorithms in particle physics for simulation, reconstruction, and analysis are naturally deployed on such platforms. We demonstrate that the acceleration of machine learning inference as a web service represents a heterogeneous computing solution for particle physics experiments that potentially requires minimal modification to the current computing model. As examples, we retrain the ResNet-50 convolutional neural network to demonstrate state-of-the-art performance for top quark jet tagging at the LHC and apply a ResNet-50 model with transfer learning for neutrino event classification. Using Project Brainwave by Microsoft to accelerate the ResNet-50 image classification model, we achieve average inference times of 60 (10) milliseconds with our experimental physics software framework using Brainwave as a cloud (edge or on-premises) service, representing an improvement by a factor of approximately 30 (175) in model inference latency over traditional CPU inference in current experimental hardware. A single FPGA service accessed by many CPUs achieves a throughput of 600--700 inferences per second using an image batch of one, comparable to large batch-size GPU throughput and significantly better than small batch-size GPU throughput. Deployed as an edge or cloud service for the particle physics computing model, coprocessor accelerators can have a higher duty cycle and are potentially much more cost-effective.Comment: 16 pages, 14 figures, 2 table

    Ocean acidification reduces mechanical properties of the Portuguese oyster shell with impaired microstructure: a hierarchical analysis

    Get PDF
    Abstract. The rapidly intensifying process of ocean acidification (OA) in coastal areas due to anthropogenic CO2 is not only depleting carbonate ions necessary for calcification but also causing acidosis and disrupting internal pH homeostasis in several marine organisms. These negative consequences of OA on marine communities, particularly to shellfish oyster species, has been very well documented in recent studies, however, the consequences of these reduced or impaired calcification processes on the end-product, shells or skeletons, still remains one of the major research gaps. Shells produced by marine organisms under OA are expected to be corroded with disorganized or impaired crystal orientation or microstructures with reduced mechanical property. To bridge this knowledge gap and to test the above hypothesis, we investigated the effect of OA on shell of the commercially important oyster species (Crassostrea angulata) at ecologically and climatically relevant OA levels (using pH 8.1, 7.8, 7.5, 7.2 as proxies). In decreased pH conditions, a drop of shell hardness and stiffness was revealed by nanoindentation tests, while an evident loosened internal microstructure was detected by scanning electron microscopy (SEM). In contrary, the crystallographic orientation of oyster shell showed no significant difference with decreasing pH by Electron Back Scattered Diffraction (EBSD) analyses. These results indicate the loosened internal microstructure may be the cause of the OA induced reduction in shell hardness and stiffness. Micro-computed tomography analysis (Micro-CT) indicated that an overall "down-shifting" of mineral density in the shell with decreasing pH, which implied the loosened internal microstructure may run through the shell, thus inevitably limiting the effectiveness of the shell defensive function. This study surfaces potential bottom-up deterioration induced by OA on oyster shells, especially in their early juvenile life stage. This knowledge is critical to forecast the survival and production of edible oysters in future ocean. </jats:p

    Identification of a biomarker profile associated with resistance to neoadjuvant chemoradiation therapy in rectal cancer

    Get PDF
    OBJECTIVE: To identify a biomarker profile associated with tumor response to chemoradiation (CRT) in locally advanced rectal cancer. BACKGROUND: Rectal cancer response to neoadjuvant CRT is variable. Whereas some patients have a minimal response, others achieve a pathologic complete response (pCR) and have no viable cancer cells in their surgical specimens. Identifying biomarkers of response will help select patients more likely to benefit from CRT. METHODS: This study includes 132 patients with locally advanced rectal cancer treated with neoadjuvant CRT followed by surgery. Tumor DNA from pretreatment tumor biopsies and control DNA from paired normal surgical specimens was screened for mutations and polymorphisms in 23 genes. Genetic biomarkers were correlated with tumor response to CRT (pCR vs non-pCR), and the association of single or combined biomarkers with tumor response was determined. RESULTS: Thirty-three of 132 (25%) patients achieved a pCR and 99 (75%) patients had non-pCR. Three individual markers were associated with non-pCR; v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog mutation (P = 0.0145), cyclin D1 G870A (AA) polymorphism (P = 0.0138), and methylenetetrahydrofolate reductase (NAD(P)H) C677T (TT) polymorphism (P = 0.0120). Analysis of biomarker combinations revealed that none of the 27 patients with both tumor protein p53 (p53) and v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog mutations had a pCR. Further, in patients with both p53 and v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog mutations or the cyclin D1 G870A (AA) polymorphism or the methylenetetrahydrofolate reductase (NAD(P)H) C677T (TT) polymorphism (n = 52) the association with non-pCR was further strengthened; 51 of 52 (98%) of patients were non-pCR. These biomarker combinations had a validity of more than 70% and a positive predictive value of 97% to 100%, predicting that patients harboring these mutation/polymorphism profiles will not achieve a pCR. CONCLUSIONS: A specific biomarker profile is strongly associated with non-pCR to CRT and could be used to select optimal oncologic therapy in rectal cancer patients. ClinicalTrials.org Identifier: NCT00335816

    Epidemiology of Doublet/Multiplet Mutations in Lung Cancers: Evidence that a Subset Arises by Chronocoordinate Events

    Get PDF
    BACKGROUND: Evidence strongly suggests that spontaneous doublet mutations in normal mouse tissues generally arise from chronocoordinate events. These chronocoordinate mutations sometimes reflect "mutation showers", which are multiple chronocoordinate mutations spanning many kilobases. However, little is known about mutagenesis of doublet and multiplet mutations (domuplets) in human cancer. Lung cancer accounts for about 25% of all cancer deaths. Herein, we analyze the epidemiology of domuplets in the EGFR and TP53 genes in lung cancer. The EGFR gene is an oncogene in which doublets are generally driver plus driver mutations, while the TP53 gene is a tumor suppressor gene with a more typical situation in which doublets derive from a driver and passenger mutation. METHODOLOGY/PRINCIPAL FINDINGS: EGFR mutations identified by sequencing were collected from 66 published papers and our updated EGFR mutation database (www.egfr.org). TP53 mutations were collected from IARC version 12 (www-p53.iarc.fr). For EGFR and TP53 doublets, no clearly significant differences in race, ethnicity, gender and smoking status were observed. Doublets in the EGFR and TP53 genes in human lung cancer are elevated about eight- and three-fold, respectively, relative to spontaneous doublets in mouse (6% and 2.3% versus 0.7%). CONCLUSIONS/SIGNIFICANCE: Although no one characteristic is definitive, the aggregate properties of doublet and multiplet mutations in lung cancer are consistent with a subset derived from chronocoordinate events in the EGFR gene: i) the eight frameshift doublets (present in 0.5% of all patients with EGFR mutations) are clustered and produce a net in-frame change; ii) about 32% of doublets are very closely spaced (< or =30 nt); and iii) multiplets contain two or more closely spaced mutations. TP53 mutations in lung cancer are very closely spaced (< or =30 nt) in 33% of doublets, and multiplets generally contain two or more very closely spaced mutations. Work in model systems is necessary to confirm the significance of chronocoordinate events in lung and other cancers

    Analysis of Cancer Mutation Signatures in Blood by a Novel Ultra-Sensitive Assay: Monitoring of Therapy or Recurrence in Non-Metastatic Breast Cancer

    Get PDF
    BACKGROUND: Tumor DNA has been shown to be present both in circulating tumor cells in blood and as fragments in the plasma of metastatic cancer patients. The identification of ultra-rare tumor-specific mutations in blood would be the ultimate marker to measure efficacy of cancer therapy and/or early recurrence. Herein we present a method for detecting microinsertions/deletions/indels (MIDIs) at ultra-high analytical selectivity. MIDIs comprise about 15% of mutations. METHODS AND FINDINGS: We describe MIDI-Activated Pyrophosphorolysis (MAP), a method of ultra-high analytical selectivity for detecting MIDIs. The high analytical selectivity of MAP is putatively due to serial coupling of two rare events: heteroduplex slippage and mis-pyrophosphorolysis. MAP generally has an analytical selectivity of one mutant molecule per >1 billion wild type molecules and an analytical sensitivity of one mutant molecule per reaction. The analytical selectivity of MAP is about 100,000-fold better than that of our previously described method of Pyrophosphorolysis Activated Polymerization-Allele specific amplification (PAP-A) for detecting MIDIs. The utility of this method is illustrated in two ways. 1) We demonstrate that two EGFR deletions commonly found in lung cancers are not present in tissue from four normal human lungs (10(7) copies of gDNA each) or in blood samples from 10 healthy individuals (10(7) copies of gDNA each). This is inconsistent, at least at an analytical sensitivity of 10(-7), with the hypotheses of (a) hypermutation or (b) strong selection of these growth factor-mutated cells during normal lung development leads to accumulation of pre-neoplastic cells with these EGFR mutations, which sometimes can lead to lung cancer in late adulthood. Moreover, MAP was used for large scale, high throughput "gene pool" analysis. No germline or early embryonic somatic mosaic mutation was detected (at a frequency of >0.3%) for the 15/18 bp EGFR deletion mutations in 6,400 individuals, suggesting that early embryonic EGFR somatic mutation is very rare, inconsistent with hypermutation or strong selection of these deletions in the embryo. 2) The second illustration of MAP utility is in personalized monitoring of therapy and early recurrence in cancer. Tumor-specific p53 mutations identified at diagnosis in the plasma of six patients with stage II and III breast cancer were undetectable after therapy in four women, consistent with clinical remission, and continued to be detected after treatment in two others, reflecting tumor progression. CONCLUSIONS: MAP has an analytical selectivity of one part per billion for detection of MIDIs and an analytical sensitivity of one molecule. MAP provides a general tool for monitoring ultra-rare mutations in tissues and blood. As an example, we show that the personalized cancer signature in six out of six patients with non-metastatic breast cancer can be detected and that levels over time are correlated with the clinical course of disease

    Classification of the FRW universe with a cosmological constant and a perfect fluid of the equation of state p=wρp = w\rho

    Full text link
    We systematically study the evolution of the Friedmann-Robertson-Walker (FRW) universe coupled with a cosmological constant Λ\Lambda and a perfect fluid that has the equation of state p=wρp=w\rho, where pp and ρ\rho denote, respectively, the pressure and energy density of the fluid, and ww is an arbitrary real constant. Depending on the specific values of w,  Λw,\; \Lambda, and the curvature kk of 3-dimensional space, we separate all of the solutions into various cases. In each case the main properties of the evolution are given in detail, including the periods of deceleration and/or acceleration, and the existence of big bang, big crunch, and big rip singularities. In some cases, errors in classification and interpretation appearing in standard textbooks have been corrected.Comment: revtex4, 24 figure

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

    Get PDF
    A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at root s = 8 TeV. The data correspond to an integrated luminosity of 19.7 fb(-1). The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t (t) over bar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95 confidence level for the product of the production cross section and branching fraction sigma(gg -> X) B(X -> HH -> b (b) over barb (b) over bar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with amass scale Lambda(R) = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    MUSiC : a model-unspecific search for new physics in proton-proton collisions at root s=13TeV

    Get PDF
    Results of the Model Unspecific Search in CMS (MUSiC), using proton-proton collision data recorded at the LHC at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1), are presented. The MUSiC analysis searches for anomalies that could be signatures of physics beyond the standard model. The analysis is based on the comparison of observed data with the standard model prediction, as determined from simulation, in several hundred final states and multiple kinematic distributions. Events containing at least one electron or muon are classified based on their final state topology, and an automated search algorithm surveys the observed data for deviations from the prediction. The sensitivity of the search is validated using multiple methods. No significant deviations from the predictions have been observed. For a wide range of final state topologies, agreement is found between the data and the standard model simulation. This analysis complements dedicated search analyses by significantly expanding the range of final states covered using a model independent approach with the largest data set to date to probe phase space regions beyond the reach of previous general searches.Peer reviewe
    corecore