125 research outputs found

    Uncertainties in long-term twenty-first century process-based coastal sea-level projections

    Get PDF
    Many processes affect sea level near the coast. In this paper, we discuss the major uncertainties in coastal sea-level projections from a process-based perspective, at different spatial and temporal scales, and provide an outlook on how these uncertainties may be reduced. Uncertainty in centennial global sea-level rise is dominated by the ice sheet contributions. Geographical variations in projected sea-level change arise mainly from dynamical patterns in the ocean response and other geophysical processes. Finally, the uncertainties in the short-duration extreme sea-level events are controlled by near coastal processes, storms and tides

    Enhanced warming over the global subtropical western boundary currents

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Climate Change 2 (2012): 161-166, doi:10.1038/nclimate1353.Subtropical western boundary currents are warm, fast flowing currents that form on the western side of ocean basins. They carry warm tropical water to the mid-latitudes and vent large amounts of heat and moisture to the atmosphere along their paths, affecting atmospheric jet streams and mid-latitude storms, as well as ocean carbon uptake. The possibility that these highly energetic and nonlinear currents might change under greenhouse gas forcing has raised significant concerns, but detecting such changes is challenging owing to limited observations. Here, using reconstructed sea surface temperature datasets and newly developed century-long ocean and atmosphere reanalysis products, we find that the post-1900 surface ocean warming rate over the path of these currents is two to three times faster than the global mean surface ocean warming rate. The accelerated warming is associated with a synchronous poleward shift and/or intensification of global subtropical western boundary currents in conjunction with a systematic change in winds over both hemispheres. This enhanced warming may reduce ocean's ability to absorb anthropogenic carbon dioxide over these regions. However, uncertainties in detection and attribution of these warming trends remain, pointing to a need for a long-term monitoring network of the global western boundary currents and their extensions.This work is supported by China National Key Basic Research Project (2007CB411800) and National Natural Science Foundation Projects (40788002, 40921004). WC is supported by the Australian Climate Change Science program and the Southeast Australia Climate Initiative. HN is supported in part by the Japanese Ministry of Education, Culture, Sports, Science and Technology through Grant-in-Aid for Scientific Research on Innovative Areas #2205 and by the Japanese Ministry of Environment through Global Environment Research Fund (S-5). MJM is supported by NOAA’s Climate Program Office.2012-07-2

    Syk: a new player in the field of breast cancer

    Get PDF
    Breast tumor development and progression are thought to occur through a complex, multistep process, including oncogene activation (eg HER2/neu) and mutation or loss of tumor suppressor genes (eg p53). Determining the function of genetic alterations in breast carcinoma tumorigenesis and metastasis has been the focus of intensive research efforts for several decades. One group of proteins that play a critical role in breast cancer cell signaling pathways are tyrosine kinases. Overexpression of the tyrosine kinase HER2/neu is observed in many human breast cancers and is positively correlated with enhanced tumorigenesis [1]. Recently, another tyrosine kinase, Syk, has been implicated as an important inhibitor of breast cancer cell growth and metastasis [2]. This recent finding was unexpected, since Syk function has been predominantly linked to hematopoietic cell signaling, and is discussed further in this commentary

    Sea Level and the role of coastal trapped waves in mediating the influence of the open ocean on the coast

    Get PDF
    The fact that ocean currents must flow parallel to the coast leads to the dynamics of coastal sea level being quite different from the dynamics in the open ocean. The coastal influence of open-ocean dynamics (dynamics associated with forcing which occurs in deep water, beyond the continental slope) therefore involves a hand-over between the predominantly geostrophic dynamics of the interior ocean and the ageostrophic dynamics which must occur at the coast. An understanding of how this hand-over occurs can be obtained by considering the combined role of coastal trapped waves and bottom friction. We here review understanding of coastal trapped waves, which propagate cyclonically around ocean basins along the continental shelf and slope, at speeds which are fast compared to those of baroclinic planetary waves and currents in the open ocean (excluding the large-scale barotropic mode). We show that this results in coastal sea-level signals on western boundaries which, compared to the nearby open-ocean signals, are spatially smoothed, reduced in amplitude, and displaced along the coast in the direction of propagation of coastal trapped waves. The open-ocean influence on eastern boundaries is limited to signals propagating polewards from the equatorial waveguide (although a large-scale diffusive influence may also play a role). This body of work is based on linearised equations, but we also discuss the nonlinear case. We suggest that a proper consideration of nonlinear terms may be very important on western boundaries, as the competition between advection by western boundary currents and a counter-propagating influence of coastal trapped waves has the potential to lead to sharp gradients in coastal sea level where the two effects come into balance

    North Pacific twentieth century decadal-scale variability is unique for the past 342 years

    Get PDF
    Reconstructed sea surface temperatures (SSTs) derived from Mg/Ca measurements in nine encrusting coralline algal skeletons from the Aleutian archipelago in the northernmost Pacific Ocean reveal an overall increase in SST from 1665 to 2007. In the Aleutian SST reconstruction, decadal-scale variability is a transient feature present during the 1700s and early 1800s and then fully emerging post-1950. SSTs vary coherently with available instrument records of cyclone variance and vacillate in and out of coherence with multicentennial Pacific Northwest drought reconstructions as a response to SST-driven alterations of storm tracks reaching North America. These results indicate that an influence of decadal-scale variability on the North Pacific storm tracks only became apparent during the midtwentieth century. Furthermore, what has been assumed as natural variability in the North Pacific, based on twentieth century instrumental data, is not consistent with the long-term natural variability evident in reconstructed SSTs predating the anthropogenic influence

    Towards comprehensive observing and modeling systems for monitoring and predicting regional to coastal sea level

    Get PDF
    A major challenge for managing impacts and implementing effective mitigation measures and adaptation strategies for coastal zones affected by future sea level (SL) rise is our limited capacity to predict SL change at the coast on relevant spatial and temporal scales. Predicting coastal SL requires the ability to monitor and simulate a multitude of physical processes affecting SL, from local effects of wind waves and river runoff to remote influences of the large-scale ocean circulation on the coast. Here we assess our current understanding of the causes of coastal SL variability on monthly to multi-decadal timescales, including geodetic, oceanographic and atmospheric aspects of the problem, and review available observing systems informing on coastal SL. We also review the ability of existing models and data assimilation systems to estimate coastal SL variations and of atmosphere-ocean global coupled models and related regional downscaling efforts to project future SL changes. We discuss (1) observational gaps and uncertainties, and priorities for the development of an optimal and integrated coastal SL observing system, (2) strategies for advancing model capabilities in forecasting short-term processes and projecting long-term changes affecting coastal SL, and (3) possible future developments of sea level services enabling better connection of scientists and user communities and facilitating assessment and decision making for adaptation to future coastal SL change.RP was funded by NASA grant NNH16CT00C. CD was supported by the Australian Research Council (FT130101532 and DP 160103130), the Scientific Committee on Oceanic Research (SCOR) Working Group 148, funded by national SCOR committees and a grant to SCOR from the U.S. National Science Foundation (Grant OCE-1546580), and the Intergovernmental Oceanographic Commission of UNESCO/International Oceanographic Data and Information Exchange (IOC/IODE) IQuOD Steering Group. SJ was supported by the Natural Environmental Research Council under Grant Agreement No. NE/P01517/1 and by the EPSRC NEWTON Fund Sustainable Deltas Programme, Grant Number EP/R024537/1. RvdW received funding from NWO, Grant 866.13.001. WH was supported by NASA (NNX17AI63G and NNX17AH25G). CL was supported by NASA Grant NNH16CT01C. This work is a contribution to the PIRATE project funded by CNES (to TP). PT was supported by the NOAA Research Global Ocean Monitoring and Observing Program through its sponsorship of UHSLC (NA16NMF4320058). JS was supported by EU contract 730030 (call H2020-EO-2016, “CEASELESS”). JW was supported by EU Horizon 2020 Grant 633211, Atlantos

    Advances in atomic force microscopy

    Get PDF
    This article reviews the progress of atomic force microscopy (AFM) in ultra-high vacuum, starting with its invention and covering most of the recent developments. Today, dynamic force microscopy allows to image surfaces of conductors \emph{and} insulators in vacuum with atomic resolution. The mostly used technique for atomic resolution AFM in vacuum is frequency modulation AFM (FM-AFM). This technique, as well as other dynamic AFM methods, are explained in detail in this article. In the last few years many groups have expanded the empirical knowledge and deepened the theoretical understanding of FM-AFM. Consequently, the spatial resolution and ease of use have been increased dramatically. Vacuum AFM opens up new classes of experiments, ranging from imaging of insulators with true atomic resolution to the measurement of forces between individual atoms.Comment: In press (Reviews of Modern Physics, scheduled for July 2003), 86 pages, 44 figure

    Climate fluctuations of tropical coupled system: The role of ocean dynamics

    Get PDF
    The tropical oceans have long been recognized as the most important region for large-scale ocean–atmosphere interactions, giving rise to coupled climate variations on several time scales. During the Tropical Ocean Global Atmosphere (TOGA) decade, the focus of much tropical ocean research was on understanding El Niño–related processes and on development of tropical ocean models capable of simulating and predicting El Niño. These studies led to an appreciation of the vital role the ocean plays in providing the memory for predicting El Niño and thus making seasonal climate prediction feasible. With the end of TOGA and the beginning of Climate Variability and Prediction (CLIVAR), the scope of climate variability and predictability studies has expanded from the tropical Pacific and ENSO-centric basis to the global domain. In this paper the progress that has been made in tropical ocean climate studies during the early years of CLIVAR is discussed. The discussion is divided geographically into three tropical ocean basins with an emphasis on the dynamical processes that are most relevant to the coupling between the atmosphere and oceans. For the tropical Pacific, the continuing effort to improve understanding of large- and small-scale dynamics for the purpose of extending the skill of ENSO prediction is assessed. This paper then goes beyond the time and space scales of El Niño and discusses recent research activities on the fundamental issue of the processes maintaining the tropical thermocline. This includes the study of subtropical cells (STCs) and ventilated thermocline processes, which are potentially important to the understanding of the low-frequency modulation of El Niño. For the tropical Atlantic, the dominant oceanic processes that interact with regional atmospheric feedbacks are examined as well as the remote influence from both the Pacific El Niño and extratropical climate fluctuations giving rise to multiple patterns of variability distinguished by season and location. The potential impact of Atlantic thermohaline circulation on tropical Atlantic variability (TAV) is also discussed. For the tropical Indian Ocean, local and remote mechanisms governing low-frequency sea surface temperature variations are examined. After reviewing the recent rapid progress in the understanding of coupled dynamics in the region, this study focuses on the active role of ocean dynamics in a seasonally locked east–west internal mode of variability, known as the Indian Ocean dipole (IOD). Influences of the IOD on climatic conditions in Asia, Australia, East Africa, and Europe are discussed. While the attempt throughout is to give a comprehensive overview of what is known about the role of the tropical oceans in climate, the fact of the matter is that much remains to be understood and explained. The complex nature of the tropical coupled phenomena and the interaction among them argue strongly for coordinated and sustained observations, as well as additional careful modeling investigations in order to further advance the current understanding of the role of tropical oceans in climate
    corecore