96 research outputs found

    Genetic variation in target-site resistance to pyrethroids and pirimicarb in Tunisian populations of the peach-potato aphid, Myzus persicae (sulzer) (Hemiptera: Aphididae)

    Get PDF
    This is the peer reviewed version of the following article: Charaabi, K., Boukhris-Bouhachem, S., Makni, M., Fenton, B. and Denholm, I. (2016), 'Genetic variation in target-site resistance to pyrethroids and pirimicarb in Tunisian populations of the peach potato aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae)', Pest. Manag. Sci., 72: 2313–2320, which has been published in final form at http://dx.doi.org/10.1002/ps.4276. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.BACKGROUND We used molecular assays to diagnose resistance to pyrethroids and pirimicarb in samples of Myzus persicae from field crops or an insect suction trap in Tunisia. Genotypes for resistance loci were related to ones for polymorphic microsatellite loci in order to investigate breeding systems and patterns of genetic diversity, and to inform resistance management tactics. RESULTS The kdr mutation L1014F conferring pyrethroid resistance was found in all samples. The M918T s-kdr mutation also occurred in most samples, but only in conjunction with kdr. We discovered a previously unreported genotype heterozygous for L1014F but homozygous for M918T. Samples with modified acetylcholinesterase (MACE) conferring resistance to pirimicarb were less common but widespread. 16% of samples contained both the kdr and MACE mutations. Many unique microsatellite genotypes were found, suggesting that M. persicae is holocyclic in Tunisia. There were no consistent associations between resistance and microsatellite markers. CONCLUSION This first study of insecticide resistance in M. persicae in North Africa showed genetic variation in insecticide resistance within microsatellite multilocus genotypes (MLGMs) and the same resistance mechanisms to be present in different MLGMs. This contrasts with variation in northern Europe where M. persicae is fully anholocyclic. Implications for selection and control strategies are discussed. © 2016 Society of Chemical IndustryPeer reviewe

    Russian wheat aphids (Diuraphis noxia) in China: Native range expansion or recent introduction?

    Get PDF
    In this study, we explore the population genetics of the Russian wheat aphid (RWA) (Diuraphis noxia), one of the world’s most invasive agricultural pests, in north-western China. We have analysed the data of 10 microsatellite loci and mitochondrial sequences from 27 populations sampled over 2 years in China. The results confirm that the RWAs are holocyclic in China with high genetic diversity indicating widespread sexual reproduction. Distinct differences in microsatellite genetic diversity and distribution revealed clear geographic isolation between RWA populations in northern and southern Xinjiang, China, with gene flow interrupted across extensive desert regions. Despite frequent grain transportation from north to south in this region, little evidence for RWA translocation as a result of human agricultural activities was found. Consequently, frequent gene flow among northern populations most likely resulted from natural dispersal, potentially facilitated by wind currents. We also found evidence for the longterm existence and expansion of RWAs in China, despite local opinion that it is an exotic species only present in China since 1975. Our estimated date of RWA expansion throughout China coincides with the debut of wheat domestication and cultivation practices in western Asia in the Holocene. We conclude that western China represents the limit of the far eastern native range of this species. This study is the most comprehensive molecular genetic investigation of the RWA in its native range undertaken to date and provides valuable insights into the history of the association of this aphid with domesticated cereals and wild grasses

    Aktuelle Fragen zum schweizerischen und internationalen Kapitalmarktrecht - 17. Tagung zu Kapitalmarkt – Recht und Transaktionen – Tagungsband 2021

    Full text link
    Der vorliegende Tagungsband „Kapitalmarkt – Recht und Transaktionen“ legt den Schwerpunkt wie jedes Jahr auf aktuelle Entwicklungen im Finanz- und Kapitalmarktrecht unter besonderer BerĂŒcksichtigung von Transaktionen in diesem Bereich. Das Jahr 2021 stand noch immer unter dem Eindruck der Corona-Pandemie, war aber auch geprĂ€gt durch dynamische technologische Weiterentwicklung sowie die noch immer fortschreitende Zunahme der Regulierung. Die BeitrĂ€ge im vorliegenden Tagungsband befassen sich mit dem fĂŒr die Schweiz neuen PhĂ€nomen der SPACS (special purpose acquisition companies), Lombardkrediten und Margin Calls, Streitigkeiten mit ESG-Bezug, der FIDLEG-Umsetzung im Bereich Corporate Finance, Neuerungen bei der Emittentenregulierung, der LIBOR Ablösung sowie dem neuen Institut des Kapitalbandes im revidierten Aktienrecht

    Callisto's Atmosphere and Its Space Environment: Prospects for the Particle Environment Package on Board JUICE

    Get PDF
    The JUpiter ICy moons Explorer (JUICE) of the European Space Agency will investigate Jupiter and its icy moons Europa, Ganymede, and Callisto, with the aim to better understand the origin and evolution of our Solar System and the emergence of habitable worlds around gas giants. The Particle Environment Package (PEP) on board JUICE is designed to measure neutrals and ions and electrons at thermal, suprathermal, and radiation belt energies (eV to MeV). In the vicinity of Callisto, PEP will characterize the plasma environment, the outer parts of Callisto's atmosphere and ionosphere and their interaction with Jupiter's dynamic magnetosphere. Roughly 20 Callisto flybys with closest approaches between 200 and 5,000 km altitude are planned over the course of the JUICE mission. In this article, we review the state of the art regarding Callisto's ambient environment and magnetospheric interaction with recent modeling efforts for Callisto's atmosphere and ionosphere. Based on this review, we identify science opportunities for the PEP observations to optimize scientific insight gained from the foreseen JUICE flybys. These considerations will inform both science operation planning of PEP and JUICE and they will guide future model development for Callisto's atmosphere, ionosphere, and their interaction with the plasma environment

    Evidence for an Invasive Aphid “Superclone”: Extremely Low Genetic Diversity in Oleander Aphid (Aphis nerii) Populations in the Southern United States

    Get PDF
    The importance of genetic diversity in successful biological invasions is unclear. In animals, but not necessarily plants, increased genetic diversity is generally associated with successful colonization and establishment of novel habitats. The Oleander aphid, Aphis nerii, though native to the Mediterranean region, is an invasive pest species throughout much of the world. Feeding primarily on Oleander (Nerium oleander) and Milkweed (Asclepias spp.) under natural conditions, these plants are unlikely to support aphid populations year round in the southern US. The objective of this study was to describe the genetic variation within and among US populations of A. nerii, during extinction/recolonization events, to better understand the population ecology of this invasive species.We used five microsatellite markers to assess genetic diversity over a two year period within and among three aphid populations separated by small (100 km) and large (3,700 km) geographic distances on two host plant species. Here we provide evidence for A. nerii "superclones". Genotypic variation was absent in all populations (i.e., each population consisted of a single multilocus genotype (MLG) or "clone") and the genetic composition of only one population completely changed across years. There was no evidence of sexual reproduction or host races on different plant species.Aphis nerii is a well established invasive species despite having extremely low genetic diversity. As this aphid appears to be obligatorily asexual, it may share more similarities with clonally reproducing invasive plants, than with other animals. Patterns of temporal and geographic genetic variation, viewed in the context of its population dynamics, have important implications for the management of invasive pests and the evolutionary biology of asexual species

    Facultative Symbiont Infections Affect Aphid Reproduction

    Get PDF
    Some bacterial symbionts alter their hosts reproduction through various mechanisms that enhance their transmission in the host population. In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum harbors several facultative symbionts influencing several aspects of host ecology. Aphids reproduce by cyclical parthenogenesis whereby clonal and sexual reproduction alternate within the annual life cycle. Many species, including the pea aphid, also show variation in their reproductive mode at the population level, with some lineages reproducing by cyclical parthenogenesis and others by permanent parthenogenesis. While the role of facultative symbionts has been well studied during the parthenogenetic phase of their aphid hosts, very little is known on their possible influence during the sexual phase. Here we investigated whether facultative symbionts modulate the capacity to produce sexual forms in various genetic backgrounds of the pea aphid with controlled symbiont composition and also in different aphid genotypes from natural populations with previously characterized infection status and reproductive mode. We found that most facultative symbionts exhibited detrimental effects on their hosts fitness under sex-inducing conditions in comparison with the reference lines. We also showed that the loss of sexual phase in permanently parthenogenetic lineages of A. pisum was not explained by facultative symbionts. Finally, we demonstrated that Spiroplasma infection annihilated the production of males in the host progeny by inducing a male-killing phenotype, an unexpected result for organisms such as aphids that reproduce primarily through clonal reproduction

    Weak Spatial and Temporal Population Genetic Structure in the Rosy Apple Aphid, Dysaphis plantaginea, in French Apple Orchards

    Get PDF
    We used eight microsatellite loci and a set of 20 aphid samples to investigate the spatial and temporal genetic structure of rosy apple aphid populations from 13 apple orchards situated in four different regions in France. Genetic variability was very similar between orchard populations and between winged populations collected before sexual reproduction in the fall and populations collected from colonies in the spring. A very small proportion of individuals (∌2%) had identical multilocus genotypes. Genetic differentiation between orchards was low (FST<0.026), with significant differentiation observed only between orchards from different regions, but no isolation by distance was detected. These results are consistent with high levels of genetic mixing in holocyclic Dysaphis plantaginae populations (host alternation through migration and sexual reproduction). These findings concerning the adaptation of the rosy apple aphid have potential consequences for pest management

    Functional insights from the GC-poor genomes of two aphid parasitoids, Aphidius ervi and Lysiphlebus fabarum.

    Get PDF
    Parasitoid wasps have fascinating life cycles and play an important role in trophic networks, yet little is known about their genome content and function. Parasitoids that infect aphids are an important group with the potential for biological control. Their success depends on adapting to develop inside aphids and overcoming both host aphid defenses and their protective endosymbionts. We present the de novo genome assemblies, detailed annotation, and comparative analysis of two closely related parasitoid wasps that target pest aphids: Aphidius ervi and Lysiphlebus fabarum (Hymenoptera: Braconidae: Aphidiinae). The genomes are small (139 and 141 Mbp) and the most AT-rich reported thus far for any arthropod (GC content: 25.8 and 23.8%). This nucleotide bias is accompanied by skewed codon usage and is stronger in genes with adult-biased expression. AT-richness may be the consequence of reduced genome size, a near absence of DNA methylation, and energy efficiency. We identify missing desaturase genes, whose absence may underlie mimicry in the cuticular hydrocarbon profile of L. fabarum. We highlight key gene groups including those underlying venom composition, chemosensory perception, and sex determination, as well as potential losses in immune pathway genes. These findings are of fundamental interest for insect evolution and biological control applications. They provide a strong foundation for further functional studies into coevolution between parasitoids and their hosts. Both genomes are available at https://bipaa.genouest.org
    • 

    corecore