73 research outputs found
ZurĆ¼ck zu mehr Markt: Selbststabilisierende Anleihen
Wolfgang von Eichborn, Bundesfinanzhof, schlƤgt in seinem Kommentar das Konzept der Ā»selbststabilisierenden AnleihenĀ« vor, die die Verantwortung fĆ¼r die Finanzierungs- und Konsolidierungsnotwendigkeiten auch Ć¼bermƤĆig verschuldeter Staaten wieder dem KrƤftespiel derjenigen aussetzen, die am Markt Kredite nachfragen und anbieten. Seiner Ansicht nach ist der Markt als Steuerungsinstrument unverzichtbar. Der Ausweg aus der Staatsschuldenkrise muss deshalb grundsƤtzlich in Ā»mehr MarktĀ« und nicht in Ā»weniger MarktĀ« gesucht werden.Markt, Ćffentliche Anleihe, Ćffentliche Schulden, Finanzmarktkrise, Marktmechanismus, Haushaltskonsolidierung
JAIL: a structure-based interface library for macromolecules
The increasing number of solved macromolecules provides a solid number of 3D interfaces, if all types of molecular contacts are being considered. JAIL annotates three different kinds of macromolecular interfaces, those between interacting protein domains, interfaces of different protein chains and interfaces between proteins and nucleic acids. This results in a total number of about 184 000 database entries. All the interfaces can easily be identified by a detailed search form or by a hierarchical tree that describes the protein domain architectures classified by the SCOP database. Visual inspection of the interfaces is possible via an interactive protein viewer. Furthermore, large scale analyses are supported by an implemented sequential and by a structural clustering. Similar interfaces as well as non-redundant interfaces can be easily picked out. Additionally, the sequential conservation of binding sites was also included in the database and is retrievable via Jmol. A comprehensive download section allows the composition of representative data sets with user defined parameters. The huge data set in combination with various search options allow a comprehensive view on all interfaces between macromolecules included in the Protein Data Bank (PDB). The download of the data sets supports numerous further investigations in macromolecular recognition. JAIL is publicly available at http://bioinformatics.charite.de/jail
SuperTarget goes quantitative: update on drugātarget interactions
There are at least two good reasons for the on-going interest in drugātarget interactions: first, drug-effects can only be fully understood by considering a complex network of interactions to multiple targets (so-called off-target effects) including metabolic and signaling pathways; second, it is crucial to consider drug-target-pathway relations for the identification of novel targets for drug development. To address this on-going need, we have developed a web-based data warehouse named SuperTarget, which integrates drug-related information associated with medical indications, adverse drug effects, drug metabolism, pathways and Gene Ontology (GO) terms for target proteins. At present, the updated database contains >6000 target proteins, which are annotated with >330ā000 relations to 196ā000 compounds (including approved drugs); the vast majority of interactions include binding affinities and pointers to the respective literature sources. The user interface provides tools for drug screening and target similarity inclusion. A query interface enables the user to pose complex queries, for example, to find drugs that target a certain pathway, interacting drugs that are metabolized by the same cytochrome P450 or drugs that target proteins within a certain affinity range. SuperTarget is available at http://bioinformatics.charite.de/supertarget
SynSysNet:integration of experimental data on synaptic protein-protein interactions with drug-target relations
We created SynSysNet, available online at http://bioinformatics.charite.de/ synsysnet, to provide a platform that creates a comprehensive 4D network of synaptic interactions. Neuronal synapses are fundamental structures linking nerve cells in the brain and they are responsible for neuronal communication and information processing. These processes are dynamically regulated by a network of proteins. New developments in interaction prote-omics and yeast two-hybrid methods allow unbiased detection of interactors. The consolidation of data from different resources and methods is important to understand the relation to human behaviour and disease and to identify new therapeutic approaches. To this end, we established SynSysNet from a set of ā¼1000 synapse specific proteins, their structures and small-molecule interactions. For two-thirds of these, 3D structures are provided (from Protein Data Bank and homology modelling). Drug-target interactions for 750 approved drugs and 50000 compounds, as well as 5000 experimentally validated protein-protein interactions, are included. The resulting interaction network and user-selected parts can be viewed interactively and exported in XGMML. Approximately 200 involved pathways can be explored regarding drug-target interactions. Homology-modelled structures are downloadable in Protein Data Bank format, and drugs are available as MOL-files. Protein-protein interactions and drug-target interactions can be viewed as networks; corresponding PubMed IDs or sources are given. Ā© The Author(s) 2012
PROMISCUOUS: a database for network-based drug-repositioning
The procedure of drug approval is time-consuming, costly and risky. Accidental findings regarding multi-specificity of approved drugs led to block-busters in new indication areas. Therefore, the interest in systematically elucidating new areas of application for known drugs is rising. Furthermore, the knowledge, understanding and prediction of so-called off-target effects allow a rational approach to the understanding of side-effects. With PROMISCUOUS we provide an exhaustive set of drugs (25ā000), including withdrawn or experimental drugs, annotated with drugāprotein and proteināprotein relationships (21ā500/104ā000) compiled from public resources via text and data mining including manual curation. Measures of structural similarity for drugs as well as known side-effects can be easily connected to proteināprotein interactions to establish and analyse networks responsible for multi-pharmacology. This network-based approach can provide a starting point for drug-repositioning. PROMISCUOUS is publicly available at http://bioinformatics.charite.de/promiscuous
Investigation of Adverse Reactions in Tattooed Skin through Histological and Chemical Analysis
Background:
Just as the number of tattooed people has increased in recent years, so has the number of adverse reactions in tattooed skin. Tattoo colourants contain numerous, partly unidentified substances, which have the potential to provoke adverse skin reactions like allergies or granulomatous reactions. Identification of the triggering substances is often difficult or even impossible.
Methods:
Ten patients with typical adverse reactions in tattooed skin were enrolled in the study. Skin punch biopsies were taken and the paraffin-embedded specimens were analysed by standard haematoxylin and eosin and anti-CD3 stainings. Tattoo colourants provided by patients and punch biopsies of patients were analysed with different chromatography and mass spectrometry methods and X-ray fluorescence. Blood samples of 2 patients were screened for angiotensin-converting enzyme (ACE) and soluble interleukin-2 receptor (sIL-2R).
Results:
Histology showed variable skin reactions such as eosinophilic infiltrate, granulomatous reactions, or pseudolymphoma. CD3+ T lymphocytes dominated the dermal cellular infiltrate. Most patients had adverse skin reactions in red tattoos (n = 7), followed by white tattoos (n = 2). The red tattooed skin areas predominantly contained Pigment Red (P.R.) 170, but also P.R. 266, Pigment Orange (P.O.) 13, P.O. 16, and Pigment Blue (P.B.) 15. The white colourant of 1 patient contained rutile titanium dioxide but also other metals like nickel and chromium and methyl dehydroabietate ā known as the main ingredient of colophonium. None of the 2 patients showed increased levels of ACE and sIL-2R related to sarcoidosis. Seven of the study participants showed partial or complete remission after treatment with topical steroids, intralesional steroids, or topical tacrolimus.
Conclusions:
The combination of the methods presented might be a rational approach to identify the substances that trigger adverse reactions in tattoos. Such an approach might help make tattoo colourants safer in the future if such trigger substances could be omitted
Development of Immune-Specific Interaction Potentials and Their Application in the Multi-Agent-System VaccImm
Peptide vaccination in cancer therapy is a promising alternative to conventional methods. However, the parameters for this personalized treatment are difficult to access experimentally. In this respect, in silico models can help to narrow down the parameter space or to explain certain phenomena at a systems level. Herein, we develop two empirical interaction potentials specific to B-cell and T-cell receptor complexes and validate their applicability in comparison to a more general potential. The interaction potentials are applied to the model VaccImm which simulates the immune response against solid tumors under peptide vaccination therapy. This multi-agent system is derived from another immune system simulator (C-ImmSim) and now includes a module that enables the amino acid sequence of immune receptors and their ligands to be taken into account. The multi-agent approach is combined with approved methods for prediction of major histocompatibility complex (MHC)-binding peptides and the newly developed interaction potentials. In the analysis, we critically assess the impact of the different modules on the simulation with VaccImm and how they influence each other. In addition, we explore the reasons for failures in inducing an immune response by examining the activation states of the immune cell populations in detail
Targeting molecular networks for drug research.
The study of molecular networks has recently moved into the limelight of biomedical research. While it has certainly provided us with plenty of new insights into cellular mechanisms, the challenge now is how to modify or even restructure these networks. This is especially true for human diseases, which can be regarded as manifestations of distorted states of molecular networks. Of the possible interventions for altering networks, the use of drugs is presently the most feasible. In this mini-review, we present and discuss some exemplary approaches of how analysis of molecular interaction networks can contribute to pharmacology (e.g., by identifying new drug targets or prediction of drug side effects), as well as list pointers to relevant resources and software to guide future research. We also outline recent progress in the use of drugs for in vitro reprogramming of cells, which constitutes an example par excellence for altering molecular interaction networks with drugs
InterEvol database: exploring the structure and evolution of protein complex interfaces
Capturing how the structures of interacting partners evolved at their binding interfaces is a fundamental issue for understanding interactomes evolution. In that scope, the InterEvol database was designed for exploring 3D structures of homologous interfaces of protein complexes. For every chain forming a complex in the protein data bank (PDB), close and remote structural interologs were identified providing essential snapshots for studying interfaces evolution. The database provides tools to retrieve and visualize these structures. In addition, pre-computed multiple sequence alignments of most likely interologs retrieved from a wide range of species can be downloaded to enrich the analysis. The database can be queried either directly by pdb code or keyword but also from the sequence of one or two partners. Interologs multiple sequence alignments can also be recomputed online with tailored parameters using the InterEvolAlign facility. Last, an InterEvol PyMol plugin was developed to improve interactive exploration of structures versus sequence alignments at the interfaces of complexes. Based on a series of automatic methods to extract structural and sequence data, the database will be monthly updated. Structures coordinates and sequence alignments can be queried and downloaded from the InterEvol web interface at http://biodev.cea.fr/interevol/
- ā¦