2,786 research outputs found

    Fast global null controllability for a viscous Burgers' equation despite the presence of a boundary layer

    Get PDF
    In this work, we are interested in the small time global null controllability for the viscous Burgers' equation y_t - y_xx + y y_x = u(t) on the line segment [0,1]. The second-hand side is a scalar control playing a role similar to that of a pressure. We set y(t,1) = 0 and restrict ourselves to using only two controls (namely the interior one u(t) and the boundary one y(t,0)). In this setting, we show that small time global null controllability still holds by taking advantage of both hyperbolic and parabolic behaviors of our system. We use the Cole-Hopf transform and Fourier series to derive precise estimates for the creation and the dissipation of a boundary layer

    An obstruction to small time local null controllability for a viscous Burgers' equation

    Full text link
    In this work, we are interested in the small time local null controllability for the viscous Burgers' equation ytyxx+yyx=u(t)y_t - y_{xx} + y y_x = u(t) on the line segment [0,1][0,1], with null boundary conditions. The second-hand side is a scalar control playing a role similar to that of a pressure. In this setting, the classical Lie bracket necessary condition [f1,[f1,f0]][f_1,[f_1,f_0]] introduced by Sussmann fails to conclude. However, using a quadratic expansion of our system, we exhibit a second order obstruction to small time local null controllability. This obstruction holds although the information propagation speed is infinite for the Burgers equation. Our obstruction involves the weak H5/4H^{-5/4} norm of the control uu. The proof requires the careful derivation of an integral kernel operator and the estimation of residues by means of weakly singular integral operator estimates

    Throughput-Optimal Random Access with Order-Optimal Delay

    Full text link
    In this paper, we consider CSMA policies for scheduling of multihop wireless networks with one-hop traffic. The main contribution of this paper is to propose Unlocking CSMA (U-CSMA) policy that enables to obtain high throughput with low (average) packet delay for large wireless networks. In particular, the delay under U-CSMA policy becomes order-optimal. For one-hop traffic, delay is defined to be order-optimal if it is O(1), i.e., it stays bounded, as the network-size increases to infinity. Using mean field theory techniques, we analytically show that for torus (grid-like) interference topologies with one-hop traffic, to achieve a network load of ρ\rho, the delay under U-CSMA policy becomes O(1/(1ρ)3)O(1/(1-\rho)^{3}) as the network-size increases, and hence, delay becomes order optimal. We conduct simulations for general random geometric interference topologies under U-CSMA policy combined with congestion control to maximize a network-wide utility. These simulations confirm that order optimality holds, and that we can use U-CSMA policy jointly with congestion control to operate close to the optimal utility with a low packet delay in arbitrarily large random geometric topologies. To the best of our knowledge, it is for the first time that a simple distributed scheduling policy is proposed that in addition to throughput/utility-optimality exhibits delay order-optimality.Comment: 44 page
    corecore