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ABSTRACT

ChemProt-2.0 (http://www.cbs.dtu.dk/services/
ChemProt-2.0) is a public available compilation of
multiple chemical–protein annotation resources
integrated with diseases and clinical outcomes
information. The database has been updated to
>1.15 million compounds with 5.32 millions bioactiv-
ity measurements for 15 290 proteins. Each protein
is linked to quality-scored human protein–protein
interactions data based on more than half a million
interactions, for studying diseases and biological
outcomes (diseases, pathways and GO terms)
through protein complexes. In ChemProt-2.0, thera-
peutic effects as well as adverse drug reactions
have been integrated allowing for suggesting
proteins associated to clinical outcomes. New
chemical structure fingerprints were computed
based on the similarity ensemble approach.
Protein sequence similarity search was also
integrated to evaluate the promiscuity of proteins,
which can help in the prediction of off-target
effects. Finally, the database was integrated into
a visual interface that enables navigation of the
pharmacological space for small molecules.
Filtering options were included in order to facilitate
and to guide dynamic search of specific queries.

INTRODUCTION

In recent years, there has been a shift from the tradition-
ally secret experimental data kept by the pharmaceutical
industry to a more open-access culture in relation to data

sharing (1). For this reason, we have been witnessing a
steady increase in public repositories of bioactive small
molecules such as ChEMBL (2) and PubChem (3).
However, as public repositories of bioactive small mol-
ecules have only just recently been made available, the
problem of how to handle chemical entities is still
largely unsolved. Pooling data from small molecule data-
bases poses special problems. Even though standards have
been widely adopted to describe genes and proteins (e.g.
Ensembl ID, Entrez ID for genes, and UniProt ID for
proteins), small molecule identifiers, as well as measures
for properties such as biological activities, are not neces-
sarily standardized across different resources (4).

One could claim that the bottleneck in understanding
how small molecules perturb biological systems is no
longer in the generation, gathering and availability of ex-
perimental data but in their organization, presentation
and visualization; in other words, in the development of
centralized systems that would better enable their exploit-
ation. The problem is not only how to extract data from
different (federated) resources, it is also important to
provide solutions that facilitate provenance tracking, visu-
alization, uniform and systematic description of data and
their integration in ways that can preserve the semantic
relationships between the different entities.

Furthermore, the number of failures of drug candidates
in advanced stages of clinical trials has increased and the
number of submissions for US Food and Drug
Administration (FDA) approval has decreased in the
last decade. One of the reasons may be our reductionist
approach to discovery, whereby a complex system, namely
a drug and its metabolites interacting with many proteins
across multiple cellular compartments and tissues over
time, is reduced to a simplistic ligand–target interaction
model. This is probably too crude and emphasizes the
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need to look at the effects of compounds on global
systems aided by the integration of multiple biological
and temporal data sources.

With the emerging fields of chemogenomics (5), systems
pharmacology (6) and systems chemical biology (7,8), it be-
comes feasible to investigate the drug action at different
levels from molecular to pathway, cellular, tissues and clin-
ical outcomes (9). For example, it has become apparent that
many common diseases such as cancer, cardiovascular
diseases and mental disorders are much more complex
than initially anticipated, as they are caused by multiple
molecular and cellular dysfunctions rather than being the
result of a single defect. Therefore, network-centric thera-
peutic approaches that consider entire pathways rather than
single proteins must be investigated (10).

Among the recent advances in the field of systems
chemical biology, servers supporting drug profiling such
as STITCH (11), DisGENET (12) or the new database
PROMISCUOUS (13) should be mentioned. STITCH3
provides confidence scores that reflect the level of confi-
dence and significance of compound–protein interactions.
PROMISCUOUS is a resource focused on drug
compounds, including withdrawn and experimental, con-
taining drug–protein interaction and side-effect (SE) infor-
mation. DisGENET is a comprehensive gene–disease
association database focused on the current knowledge
of human genetic diseases including Mendelian, complex
and environmental diseases.

We have previously reported the development of
ChemProt, a disease chemical biology database (14).

Compared with other approaches, ChemProt-1.0 offered
a high level of integration of chemical and biological data,
including internally curated disease-associated protein–
protein interactions (PPIs) (15). Here, we present the
second release of ChemProt, a resource of annotated
and predicted disease chemical biology interactions.
ChemProt-2.0 can be accessed at http://www.cbs.dtu.dk/
services/ChemProt-2.0/. The present release contains a
compilation of over 1 100 000 unique chemicals with bio-
logical activity for >15 000 proteins. We have added a
visual interface that supports user-friendly navigation
through the data, biological activities and disease associ-
ations. ChemProt-2.0 now enables the user to query the
database not solely by chemicals or proteins but also
through therapeutic effects, adverse drug reactions and
diseases. The similarity ensemble approach (SEA)
developed by Keiser et al. (16) has also been implemented,
so that protein sequence similarity can be used when
examining chemical promiscuity. With these updates,
ChemProt-2.0 offers an integrative approach to under-
stand the impact of small molecules on biological
systems and contributes to the investigation of molecular
mechanisms related to diseases and clinical outcomes.
A workflow of the implementation is shown in Figure 1.

DATA SOURCES

Chemical–protein interactions data were gathered in June
2012 from updated open-source databases ChEMBL

Figure 1. A workflow of the functionalities in ChemProt-2.0 is depicted. User can query ChemProt-2.0 using chemical, protein, disease, ATC code
and SEs. Outcomes from the query are represented with the arrows.
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(version 14), BindingDB (17), PDSP Ki database (18),
DrugBank (version 3.0) (19), PharmGKB (20), active
compounds from the PubChem bioassay (2012) targeting
human proteins and the two commercial databases:
WOMBAT (version 2011) and WOMBAT-PK (version
2011) (21). The IUPHAR-DB database (22) was also
integrated in the new version of ChemProt-2.0.
Chemical–protein annotations that lack explicit bioactiv-
ity data might be of interest in the mining of a large and
diverse integrated database. Therefore, we included also
data from CTD (23) and STITCH (11). CTD extracts lit-
erature data about environmental chemicals and how they
modulate gene expression, whereas STITCH provides
chemical–protein relationships from text mining the
co-occurrence of a chemical term and a protein (gene)
term in MEDLINE abstracts. Clinical outcomes were of
special interest in this version and we decided to include
information from the Anatomical Therapeutic Chemical
(ATC) Classification System (24) developed by the World
Health Organization, as well as SE data from Dailymed
(http://dailymed.nlm.nih.gov/dailymed/).
From a biological perspective, we updated our internal

human interactome platform to reach 14 421 genes inter-
acting through 507 142 unique PPIs. The updated version
of OMIM (25), GeneCards (26), KEGG (27), Reactome
(28) and Gene Ontology (29) databases was also down-
loaded (June 2012), curated and integrated in
ChemProt-2.0. Also, the human disease network de-
veloped by Goh et al. (30) was integrated, allowing asso-
ciation of proteins to disease categories.

PREDICTIONS AND METHODS

Based on the assumption that compounds sharing similar
structure have potential similar bioactivities, we encoded
the chemical structure with two different types of finger-
prints: the 166 MACCS key which encode the presence or
absence of some predefined substructural or functional
groups (31) and the FP2 fingerprints computed with
OpenBABEL (32). Chemical similarity between two com-
pounds is quantitatively assessed using the Tanimoto
coefficient. By including the SEA method (16), one
can also predict potential new targets for a compound.
For the internal development of SEA, compounds with an
activity value <100 mMwere considered (only IC50, EC50,
Potency, AC50, Ki values were used). Furthermore, to
complete the set of active protein ligands, annotated com-
pound–protein interactions from CTD, DrugBank and
PharmGKB were also included, together with annotated
protein–compound in the STITCH database. For this
dataset, the raw similarity score, i.e. the sum of ligand pair
wise Tanimoto coefficients based on the FP2 fingerprint,
is 0.44. All proteins with more than five bioactive ligands
were considered.
In addition, for all protein targets, we operated under

the assumption of promiscuity, i.e. proteins with high-
sequence similarity may share similar functions and may
be targeted by the same compound (likely with different
bioactivities). Protein sequences were obtained from
Uniprot (33), and sequence comparisons were computed
using BLASTP (34). The similarity of two sequences was

assessed using an E-score, an expectation value related to
the probability that sequence similarity between two
proteins is not achieved by random chance (34). We
filtered the output and proteins with an E-value <10�10

(as default) are depicted.
With respect to SEs, 988 small molecule drugs were

matched against 174 SE as described (35). Term frequency
vectors compiled from Dailymed were integrated in
ChemProt-2.0 and proteins associated to each drug are
then depicted.

VISUAL INTERFACE

In ChemProt-2.0, a visual interface was implemented to
facilitate the visualization of the results using HTML 5
and JavaScript. The core of the interface has been
designed in the form of a heatmap. The chemical–
protein associations are depicted in a pie-chart heatmap
where each pie corresponds to the database from which we
gathered the information. Hovering over the pie-charts
with the pointer, activity values are then displayed. The
user can select different display settings (circles, fill and
rectangles). A valuable feature is the handling of multiple
activities that have been gathered for a given compound–
target pair by selecting ‘All’ values. A color spectrum from
blue (low activity) to red (strong activity) is used to
indicate the activity (Figure 2). It is also possible to
select a specific database or/and a specific activity type
and define a range of activities (threshold) of interest in
order to optimize the query. Results from the SEA
approach are also integrated in the ‘Activity Type’.

The compound query is always shown in the first column
followed by similar compounds (sorted in descending order
of similarity) whereas the protein queried is depicted in the
first row. To optimize the display, the heatmap is limited to
a section of 100 rows � 100 columns. If the chemical–
protein matrix is larger, we have included an arrow
feature (!) that allows the user to upload the next 100
data items for both axes. The user has still the possibility
to view the data in a table format and to download the
results in a flat-file format. In the table format, display
mode the user can dynamically sort and group the activities
according to compound, target, species, activity type, etc.

A second heatmap that depicts protein–disease
categories is also integrated, which suggests proteins that
may be involved in diseases. Next to it, the ‘Diseases’ link
redirects the user to the disease-associated proteins
complex around the selected protein. A new, dynamic
interface has been implemented, where the proteins
associated to a biological term are shown when highlight-
ing the term of interest (Figure 3).

APPLICATIONS

The ChemProt-2.0 database interface is accessible freely
online. In addition to the chemical and protein search that
was previously implemented, the user can search by
diseases, ATC codes and SEs. For example, the query
‘epilepsy’ returns 2662 compounds active on 13 proteins
associated to this disease. Similarly, looking for the SE
‘hallucinations’, 15 drugs (with the term frequency
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associated to it) active on 470 proteins are displayed.
Some of these drugs (ropinirole, pergolide, amantadine
and pramipexole) are used for the treatment of
Parkinson diseases, by affecting the dopaminergic and
serotonergic systems. Interestingly, visual hallucinations
are symptoms of the Parkinson’s disease and perturbing
the serotonergic system could help to alleviate these

symptoms (36). Another interesting aspect is that these
drugs affect several proteins associated to ‘Bone’ and
osteoporosis disease. For example, there is a possible as-
sociation between the polymorphism of the serotonin
transporter (HTT) and the development of osteoporosis
(37). Some of these drugs bind to HTT and could thus be
potentially investigated for drug repurposing.

Figure 2. Example of the graphical interface output based on a compound query. On the top, user can specify the query using the display settings.
The heatmap on the left represents the bioactivities gathered for the input compound (in blue) and structurally similar compounds (in pink) in the
X-axis and the proteins in the Y-axis. A color spectrum from blue (low) to red (high) is used to represent the activity. If several binding data have
been measured for the same chemical–protein interaction, intensity of the colors is represented inside the circle. It is shown for example for the
dopamine transporter (Q63380). The heatmap on the right describes the disease categories annotated to a protein. The value inside the circle
represents the number of diseases associated to a protein.

Figure 3. Example of the disease complexes network representation for the dopamine receptor D2 (DRD2). Twenty-five proteins interact directly to
the protein DRD2 and pointing the cursor to ‘Schizophrenia’, seven genes are associated to this disease.
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Many diseases seem not to be the result of a single
defect but are rather caused by multiple molecular and
cellular abnormalities. Therefore, observations of a drug
effect not only at the molecular level but also at cellular
and systems levels should guide therapeutic strategies for
the development of better and safer drugs. ChemProt-2.0
offers the possibility of interrogating multiple layers of
information by linking chemically induced biological
perturbations to disease and phenotype. We believe with
the advances in proteomics, metabolomics and other –
omics sciences, combined with next-generation sequencing
technologies, we will no longer evaluate the bioactivity
profile of a chemical solely at the molecular level, but
rather we will investigate biomedical knowledge with
the integration of genetic polymorphisms and clinical
effects (38).
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