13 research outputs found

    Early maternal deprivation immunologically primes hippocampal synapses by redistributing interleukin-1 receptor type I in a sex dependent manner

    Get PDF
    Challenges experienced in early life cause an enduring phenotypical shift of immune cells towards a sensitised state that may lead to an exacerbated reaction later in life and contribute to increased vulnerability to neurological diseases. Peripheral and central inflammation may affect neuronal function through cytokines such as IL-1. The extent to which an early life challenge induces long-term alteration of immune receptors organization in neurons has not been shown. We investigated whether a single episode of maternal deprivation (MD) on post-natal day (PND) 9 affects: (i) the synapse distribution of IL-1RI together with subunits of NMDA and AMPA receptors; and (ii) the interactions between IL-1RI and the GluN2B subunit of the NMDAR in the long-term, at PND 45. MD increased IL-1RI levels and IL-1RI interactions with GluN2B at the synapse of male hippocampal neurons, without affecting the total number of IL-1RI or NMDAR subunits. Although GluN2B and GluN2A were slightly but not significantly changed at the synapse, their ratio was significantly decreased in the hippocampus of the male rats who had experienced MD; the levels of the GluA1 and GluA2 subunits of the AMPAR were also decreased. These changes were not observed immediately after the MD episode. None of the observed alterations occurred in the hippocampus of the females or in the prefrontal cortex of either sex. These data reveal a long-term, sex-dependent modification in receptor organisation at the hippocampal post-synapses following MD. We suggest that this effect might contribute to priming hippocampal synapses to the action of IL-1\u3b2

    Is (poly-) substance use associated with impaired inhibitory control? A mega-analysis controlling for confounders.

    Get PDF
    Many studies have reported that heavy substance use is associated with impaired response inhibition. Studies typically focused on associations with a single substance, while polysubstance use is common. Further, most studies compared heavy users with light/non-users, though substance use occurs along a continuum. The current mega-analysis accounted for these issues by aggregating individual data from 43 studies (3610 adult participants) that used the Go/No-Go (GNG) or Stop-signal task (SST) to assess inhibition among mostly "recreational" substance users (i.e., the rate of substance use disorders was low). Main and interaction effects of substance use, demographics, and task-characteristics were entered in a linear mixed model. Contrary to many studies and reviews in the field, we found that only lifetime cannabis use was associated with impaired response inhibition in the SST. An interaction effect was also observed: the relationship between tobacco use and response inhibition (in the SST) differed between cannabis users and non-users, with a negative association between tobacco use and inhibition in the cannabis non-users. In addition, participants' age, education level, and some task characteristics influenced inhibition outcomes. Overall, we found limited support for impaired inhibition among substance users when controlling for demographics and task-characteristics

    EARLY MATERNAL DEPRIVATION MODULATES DISTRIBUTION OF INTERLEUKIN-1 AND NMDA RECEPTORS AT THE SYNAPTIC MEMBRANE

    No full text
    Severe stress early in life induces changes in neuronal function, determining a different setting in synaptic organization, which could be implicated in promoting an adaptive response under physiological conditions and/or in stress-related disorders later in life. The pro-inflammatory citokine Interleukin-1\u3b2 (IL-1\u3b2) has been recognised as a central regulator of stress responses. IL-1\u3b2 signal transduction in neurons occurs through the IL-1 receptor type I (IL-1-RI). We recently demonstrated in primary hippocampal neurons that IL-1RI is enriched at synaptic sites, where it co-localizes with, and binds to the GluN2B subunit of NMDA receptor (NMDAR) suggesting a functional interaction. In a model of maternal deprivation (MD) we investigated the expression and distribution at the post-synaptic site of IL-1RI, together with the GluN2A and GluN2B subunits of the NMDAR and the GluR1 and GluR2 subunits of the AMPA receptors, in the hippocampus and pre-frontal cortex of male and female rats. 24h of MD at PND9 significantly increases the levels of IL-1RI, as well as IL-1RI interaction with GluN2B, at the synapsis of hippocampal neurons at PND 45. This effect is sex-dependent, occurring only in male rats. No such alterations were observed in the prefrontal cortex as well as no enrichment of GluN2B and GluN2A at the synapse is evident in PND 45 MD rats. On the contrary, both GluR1 and GluR2 subunits of the AMPAR at the hippocampal synapse were reduced in 45 PND MD rats. The decrease of AMPAR subunits at the post-synapses of male MD rats was coupled to a decreased phosphorylation at Tyr-1472 of the GluN2B subunit of the NMDAR. These data reveal a profound modification in the receptors organization at the post-synapses induced by MD in male rats hippocampi, suggesting the setting for an immature synapse which possibly affect neuronal sensitivity to both IL-1b and the glutamatergic neurotransmission

    Long Term Sex-Dependent Psychoneuroendocrine Effects of Maternal Deprivation and Juvenile Unpredictable Stress in Rats

    No full text
    We have analysed the long-term psychoneuroendocrine effects of maternal deprivation (MD) [24 h at postnatal day (PND) 9] and/or exposure to chronic unpredictable stress (CUS) during the periadolescent period (PND 28 to PND 43) in male and female Wistar rats. Animals were tested in the elevated plus maze (EPM, anxiety) at PND 44 and in two memory tests, spontaneous alternation and novel object recognition (NOT) in adulthood. The expression of hippocampal glucocorticoid (GR) and mineralocorticoid (MR) receptors, as well as of synaptophysin, neural cell adhesion molecule and brain-derived neurotrophic factor, was analysed by in situ hybridisation in selected hippocampal regions. Endocrine determinations of leptin, testosterone and oestradiol plasma levels were carried out by radioimmunoassay. Young CUS animals showed decreased anxiety behaviour in the EPM (increased percentage of time and entries in the open arms) irrespective of neonatal treatment. Memory impairments were induced by the two stressful treatments as was revealed by the NOT, with males being most clearly affected. Although each stressful procedure, when considered separately, induced different (always decrements) effects on the three synaptic molecules analysed and affected males and females differently, the combination of MD and CUS induced an unique disruptive effect on the three synaptic plasticity players. MD induced a long-term significant decrease in hippocampal GR only in males, whereas CUS tended to increase MR in males and decrease MR in females. Both neonatal MD and periadolescent CUS induced marked reductions in testosterone and oestradiol in males, whereas MD male animals also showed significantly decreased leptin levels. By contrast, in females, none of the hormones analysed was altered by any of the stressful procedures. Taking our data together in support of the 'two-hit' hypothesis, MD during neonatal life and/or exposure to CUS during the periadolescent period induced a permanent deficit in memory, which was accompanied by a decrement in markers for hippocampal plasticity. The long-term effects on body weight and hormone levels, particularly among males, might reflect sex-dependent lasting metabolic alterations as well as an impaired reproductive function.Diabetes mellitus: pathophysiological changes and therap

    Long term sex-dependent psychoneuroendocrine effects of maternal deprivation and juvenile unpredictable stress in rats

    No full text
    We have analysed the long-term psychoneuroendocrine effects of maternal deprivation (MD) [24 h at postnatal day (PND) 9] and/or exposure to chronic unpredictable stress (CUS) during the periadolescent period (PND 28 to PND 43) in male and female Wistar rats. Animals were tested in the elevated plus maze (EPM, anxiety) at PND 44 and in two memory tests, spontaneous alternation and novel object recognition (NOT) in adulthood. The expression of hippocampal glucocorticoid (GR) and mineralocorticoid (MR) receptors, as well as of synaptophysin, neural cell adhesion molecule and brain-derived neurotrophic factor, was analysed by in situ hybridisation in selected hippocampal regions. Endocrine determinations of leptin, testosterone and oestradiol plasma levels were carried out by radioimmunoassay. Young CUS animals showed decreased anxiety behaviour in the EPM (increased percentage of time and entries in the open arms) irrespective of neonatal treatment. Memory impairments were induced by the two stressful treatments as was revealed by the NOT, with males being most clearly affected. Although each stressful procedure, when considered separately, induced different (always decrements) effects on the three synaptic molecules analysed and affected males and females differently, the combination of MD and CUS induced an unique disruptive effect on the three synaptic plasticity players. MD induced a long-term significant decrease in hippocampal GR only in males, whereas CUS tended to increase MR in males and decrease MR in females. Both neonatal MD and periadolescent CUS induced marked reductions in testosterone and oestradiol in males, whereas MD male animals also showed significantly decreased leptin levels. By contrast, in females, none of the hormones analysed was altered by any of the stressful procedures. Taking our data together in support of the 'two-hit' hypothesis, MD during neonatal life and/or exposure to CUS during the periadolescent period induced a permanent deficit in memory, which was accompanied by a decrement in markers for hippocampal plasticity. The long-term effects on body weight and hormone levels, particularly among males, might reflect sex-dependent lasting metabolic alterations as well as an impaired reproductive function
    corecore