157 research outputs found

    Experimental evaluation of compressibility coefficients for fractures and intergranular pores of an oil and gas reservoir

    Get PDF
    The paper is devoted to studies of the volumetric response of rocks caused by changes in their stress state. Changes in the volume of fracture and intergranular components of the pore space based on measurements of the volume of pore fluid extruded from a rock sample with an increase in its  all-round compression have been experimentally obtained and analyzed.  Determination of the fracture and intergranular porosity components is based on the authors' earlier proposed method of their calculation using the values of longitudinal wave velocity and total porosity. The results of experimental and analytical studies of changes in porosity and its two components (intergranular and fractured) under the action of effective stresses are considered. This approach allowed the authors to estimate the magnitude  of the range of changes in the volumetric compressibility of both intergranular pores and fractures in a representative collection of 37 samples of the Vendian-age sand reservoir of the Chayanda field. The method of separate estimation of the compressibility coefficients of fractures and intergranular pores is proposed, their values and dependence on the effective pressure are experimentally obtained. It is determined that the knowledge of the values of fracture and intergranular porosity volumetric compressibility will increase the reliability of estimates of changes in petrophysical parameters of oil and gas reservoirs caused by changes in the stress state during the development of hydrocarbon fields

    Comparison of the approaches to assessing the compressibility of the pore space

    Get PDF
    Integral and differential approaches to determining the volumetric compression of rocks caused by changes in the stress state are considered. Changes in the volume of the pore space of rocks are analyzed with an increase in its all-round compression. Estimation of changes in the compressibility coefficients of reservoirs due to the development of fields is an urgent problem, since the spread in the values of compressibility factors reduces the adequacy of estimates of changes in the physical properties and subsidence of the earth's surface of developed fields and underground gas storages. This parameter is key in assessing the geodynamic consequences of the long-term development of hydrocarbon deposits and the operation of underground gas storage facilities. Approaches to the assessment differ in the use of cumulative (integral) or local (differential) changes in porosity with a change in effective pressure. It is shown that the coefficient of volumetric compressibility of pores calculated by the integral approach significantly exceeds its value calculated by the differential approach, which is due to the accumulative nature of pore compression with an increase in effective pressure. It is shown that the differential approach more accurately determines the value of the pore compressibility coefficient, since it takes into account in more detail the features of the change in effective pressure

    Search for stop and higgsino production using diphoton Higgs boson decays

    Get PDF
    Results are presented of a search for a "natural" supersymmetry scenario with gauge mediated symmetry breaking. It is assumed that only the supersymmetric partners of the top-quark (stop) and the Higgs boson (higgsino) are accessible. Events are examined in which there are two photons forming a Higgs boson candidate, and at least two b-quark jets. In 19.7 inverse femtobarns of proton-proton collision data at sqrt(s) = 8 TeV, recorded in the CMS experiment, no evidence of a signal is found and lower limits at the 95% confidence level are set, excluding the stop mass below 360 to 410 GeV, depending on the higgsino mass

    Severe early onset preeclampsia: short and long term clinical, psychosocial and biochemical aspects

    Get PDF
    Preeclampsia is a pregnancy specific disorder commonly defined as de novo hypertension and proteinuria after 20 weeks gestational age. It occurs in approximately 3-5% of pregnancies and it is still a major cause of both foetal and maternal morbidity and mortality worldwide1. As extensive research has not yet elucidated the aetiology of preeclampsia, there are no rational preventive or therapeutic interventions available. The only rational treatment is delivery, which benefits the mother but is not in the interest of the foetus, if remote from term. Early onset preeclampsia (<32 weeks’ gestational age) occurs in less than 1% of pregnancies. It is, however often associated with maternal morbidity as the risk of progression to severe maternal disease is inversely related with gestational age at onset2. Resulting prematurity is therefore the main cause of neonatal mortality and morbidity in patients with severe preeclampsia3. Although the discussion is ongoing, perinatal survival is suggested to be increased in patients with preterm preeclampsia by expectant, non-interventional management. This temporising treatment option to lengthen pregnancy includes the use of antihypertensive medication to control hypertension, magnesium sulphate to prevent eclampsia and corticosteroids to enhance foetal lung maturity4. With optimal maternal haemodynamic status and reassuring foetal condition this results on average in an extension of 2 weeks. Prolongation of these pregnancies is a great challenge for clinicians to balance between potential maternal risks on one the eve hand and possible foetal benefits on the other. Clinical controversies regarding prolongation of preterm preeclamptic pregnancies still exist – also taking into account that preeclampsia is the leading cause of maternal mortality in the Netherlands5 - a debate which is even more pronounced in very preterm pregnancies with questionable foetal viability6-9. Do maternal risks of prolongation of these very early pregnancies outweigh the chances of neonatal survival? Counselling of women with very early onset preeclampsia not only comprises of knowledge of the outcome of those particular pregnancies, but also knowledge of outcomes of future pregnancies of these women is of major clinical importance. This thesis opens with a review of the literature on identifiable risk factors of preeclampsia

    Measurement of nuclear modification factors of gamma(1S)), gamma(2S), and gamma(3S) mesons in PbPb collisions at root s(NN)=5.02 TeV

    Get PDF
    The cross sections for ϒ(1S), ϒ(2S), and ϒ(3S) production in lead-lead (PbPb) and proton-proton (pp) collisions at √sNN = 5.02 TeV have been measured using the CMS detector at the LHC. The nuclear modification factors, RAA, derived from the PbPb-to-pp ratio of yields for each state, are studied as functions of meson rapidity and transverse momentum, as well as PbPb collision centrality. The yields of all three states are found to be significantly suppressed, and compatible with a sequential ordering of the suppression, RAA(ϒ(1S)) > RAA(ϒ(2S)) > RAA(ϒ(3S)). The suppression of ϒ(1S) is larger than that seen at √sNN = 2.76 TeV, although the two are compatible within uncertainties. The upper limit on the RAA of ϒ(3S) integrated over pT, rapidity and centrality is 0.096 at 95% confidence level, which is the strongest suppression observed for a quarkonium state in heavy ion collisions to date. © 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.Peer reviewe

    Azimuthal separation in nearly back-to-back jet topologies in inclusive 2-and 3-jet events in pp collisions at root s=13TeV

    Get PDF
    A measurement for inclusive 2- and 3-jet events of the azimuthal correlation between the two jets with the largest transverse momenta, Delta phi(12), is presented. The measurement considers events where the two leading jets are nearly collinear ("back-to-back") in the transverse plane and is performed for several ranges of the leading jet transverse momentum. Proton-proton collision data collected with the CMS experiment at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 35.9 fb(-1) are used. Predictions based on calculations using matrix elements at leading-order and next-to-leading-order accuracy in perturbative quantum chromodynamics supplemented with leading-log parton showers and hadronization are generally in agreement with themeasurements. Discrepancies between the measurement and theoretical predictions are as large as 15%, mainly in the region 177 degrees <Delta phi(12) <180 degrees. The 2- and 3-jet measurements are not simultaneously described by any of models.Peer reviewe

    The 6^{6}H states studied in the d(8He,α)d(^8\text{He},\alpha) reaction and evidence of extremely correlated character of the 5^{5}H ground state

    No full text
    The extremely neutron-rich system 6^{6}H was studied in the direct 2H(8He,4He)6^2\text{H}(^8\text{He},{^4\text{He}})^{6}H transfer reaction with a 26 AAMeV secondary 8^{8}He beam. The measured missing mass spectrum shows a resonant state in 6^{6}H at 6.8(3)6.8(3) MeV relative to the 3^3H+3n3n threshold. There is also some evidence of a resonant state at 4.5(3)4.5(3) MeV which is a realistic candidate for the 6^{6}H ground state (g.s.). The population cross section of the presumably pp-wave states in the energy range from 4 to 8 MeV is dσ/dΩc.m.190d\sigma/d\Omega_{\text{c.m.}} \sim 190μ\mub/sr in the angular range 5<θc.m.<165^{\circ}<\theta_{\text{c.m.}}<16^{\circ}. The obtained missing mass spectrum is free of the 6^{6}H events below 3.5 MeV (dσ/dΩc.m.3d\sigma/d\Omega_{\text{c.m.}} \lesssim 3μ\mub/sr in the angular range 5<θc.m.<205^{\circ}<\theta_{\text{c.m.}}<20^{\circ}), which indicates that the value of 4.5 MeV is the lower limit of the possible 6^{6}H g.s. location. The obtained results confirm that the decay mechanism of the 7^{7}H g.s. (located at 2.2 MeV above the 3^{3}H+4n4n threshold) is the ``true'' (or simultaneous) 4n4n emission. The resonance energy profiles and the momentum distributions of the sequential 6^{6}H \,\rightarrow \, ^5H(g.s.)+n\, \rightarrow \, ^3H+3n3n decay fragments were analyzed by the theoretically-updated direct four-body-decay and sequential-emission mechanisms. The measured momentum distributions of the 3^{3}H fragments in the 6^{6}H rest frame indicate a very strong ``dineutron-type'' correlations in the 5^{5}H ground state decay

    Measurement of charged particle spectra in minimum-bias events from proton-proton collisions at root s =13 TeV

    Get PDF
    Pseudorapidity, transverse momentum, and multiplicity distributions are measured in the pseudorapidity range vertical bar eta vertical bar 0.5 GeV in proton-proton collisions at a center-of-mass energy of root s = 13 TeV. Measurements are presented in three different event categories. The most inclusive of the categories corresponds to an inelastic pp data set, while the other two categories are exclusive subsets of the inelastic sample that are either enhanced or depleted in single diffractive dissociation events. The measurements are compared to predictions from Monte Carlo event generators used to describe high-energy hadronic interactions in collider and cosmic-ray physics.Peer reviewe

    Expression of Interest for a Phase-II LHCb Upgrade: Opportunities in flavour physics, and beyond, in the HL-LHC era

    No full text
    A Phase-II Upgrade is proposed for the LHCb experiment in order to take full advantage of the flavour-physics opportunities at the HL-LHC, and other topics that can be studied with a forward spectrometer. This Upgrade, which will be installed in Long Shutdown 4 of the LHC (2030), will build on the strengths of the current experiment and the Phase-I Upgrade, but will consist of re-designed sub-systems that can operate at a luminosity of 2×1034cm−2s−1, ten times that of the Phase-I Upgrade detector. New and improved detector components will increase the intrinsic performance of the experiment in certain key areas. In particular the installation of a tungsten sampling electromagnetic calorimeter will widen LHCb's capabilities for decays involving π0 and η mesons, electrons, and photons from loop-level penguin processes. The physics motivation is presented, and the prospects for operating the LHCb Interaction Point at high luminosity are assessed. The challenges for the detector are described and possible solutions are discussed. Finally, the key R\&amp;D areas are summarised, together with a set of initial modifications suitable for implementation during Long Shutdown 3 (2024--2026)

    Observation of sizeable ω\omega contribution to χc1(3872)π+πJ/ψ\chi_{c1}(3872) \to \pi^+\pi^- J/\psi decays

    No full text
    Resonant structures in the dipion mass spectrum from χc1(3872)π+πJ/ψ\chi_{c1}(3872)\to\pi^+\pi^- J/\psi decays, produced via B+K+χc1(3872)B^+\to K^+\chi_{c1}(3872) decays, are analyzed using proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9 fb1^{-1}. A sizeable contribution from the isospin conserving χc1(3872)ωJ/ψ\chi_{c1}(3872)\to\omega J/\psi decay is established for the first time, (21.4±2.3±2.0)%(21.4\pm2.3\pm2.0)\%, with a significance of more than 7.1σ7.1\sigma. The amplitude of isospin violating decay, χc1(3872)ρ0J/ψ\chi_{c1}(3872)\to\rho^0 J/\psi, relative to isospin conserving decay, χc1(3872)ωJ/ψ\chi_{c1}(3872)\to\omega J/\psi, is properly determined, and it is a factor of six larger than expected for a pure charmonium state.Resonant structures in the dipion mass spectrum from χc1(3872)→π+π-J/ψ decays, produced via B+→K+χc1(3872) decays, are analyzed using proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9  fb-1. A sizeable contribution from the isospin conserving χc1(3872)→ωJ/ψ decay is established for the first time, (21.4±2.3±2.0)%, with a significance of more than 7.1σ. The amplitude of isospin violating decay, χc1(3872)→ρ0J/ψ, relative to isospin conserving decay, χc1(3872)→ωJ/ψ, is properly determined, and it is a factor of 6 larger than expected for a pure charmonium state.Resonant structures in the dipion mass spectrum from χc1(3872)π+πJ/ψ\chi_{c1}(3872)\to\pi^+\pi^- J/\psi decays, produced via B+K+χc1(3872)B^+\to K^+\chi_{c1}(3872) decays, are analyzed using proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9 fb1fb^{-1}. A sizeable contribution from the isospin conserving χc1(3872)ωJ/ψ\chi_{c1}(3872)\to\omega J/\psi decay is established for the first time, (21.4±2.3±2.0)%(21.4\pm2.3\pm2.0)\%, with a significance of more than 7.1σ7.1\sigma. The amplitude of isospin violating decay, χc1(3872)ρ0J/ψ\chi_{c1}(3872)\to\rho^0 J/\psi, relative to isospin conserving decay, χc1(3872)ωJ/ψ\chi_{c1}(3872)\to\omega J/\psi, is properly determined, and it is a factor of six larger than expected for a pure charmonium state
    corecore