10 research outputs found

    Prospective individual patient data meta-analysis of two randomized trials on convalescent plasma for COVID-19 outpatients

    Full text link
    Data on convalescent plasma (CP) treatment in COVID-19 outpatients are scarce. We aimed to assess whether CP administered during the first week of symptoms reduced the disease progression or risk of hospitalization of outpatients. Two multicenter, double-blind randomized trials (NCT04621123, NCT04589949) were merged with data pooling starting when = 50 years and symptomatic for <= 7days were included. The intervention consisted of 200-300mL of CP with a predefined minimum level of antibodies. Primary endpoints were a 5-point disease severity scale and a composite of hospitalization or death by 28 days. Amongst the 797 patients included, 390 received CP and 392 placebo; they had a median age of 58 years, 1 comorbidity, 5 days symptoms and 93% had negative IgG antibody-test. Seventy-four patients were hospitalized, 6 required mechanical ventilation and 3 died. The odds ratio (OR) of CP for improved disease severity scale was 0.936 (credible interval (CI) 0.667-1.311); OR for hospitalization or death was 0.919 (CI 0.592-1.416). CP effect on hospital admission or death was largest in patients with <= 5 days of symptoms (OR 0.658, 95%CI 0.394-1.085). CP did not decrease the time to full symptom resolution

    Differential respiratory control of the upper airway and diaphragm muscles induced by 5-HT1A receptor ligands.

    No full text
    International audienceBACKGROUND: Serotonin (5-HT) has a role in respiratory function and dysfunction. Although 5-HT affects respiratory drive to both phrenic and cranial motoneurons, relatively little is known about the role of 5-HT receptor subtypes in the control of upper airway muscle (UAM) respiratory activity. MATERIALS AND METHODS: Here, we performed central injections of 5-HT1A agonist (8-OHDPAT) or antagonist (WAY100635) in anesthetized rats and analyzed changes in the electromyographic activity of several UAM and other cardiorespiratory parameters. We also compared the pattern of Fos expression induced after central injection of a control solution or 8-OHDPAT. RESULTS: Results showed that 8-OHDPAT induced a robust increase in UAM activity, associated with either tachypnea under volatile anesthesia or bradypnea under liquid anesthesia. Injection of WAY100635 switched off UAM respiratory activity and led to bradypnea, suggesting a tonic excitatory role of endogenous 5-HT1A receptor activation. Co-injection of the agonist and the antagonist blocked the effects produced by each drug alone. Besides drug-induced changes in respiratory frequency, only slight increases in surface of diaphragm bursts were observed. Significant increases in Fos expression after 5-HT1A receptor activation were seen in the nucleus tractus solitarius, nucleus raphe pallidus, parapyramidal region, retrotrapezoid nucleus, lateral parabrachial, and Kölliker-Fuse nuclei. This restricted pattern of Fos expression likely identified the neural substrate responsible for the enhancement of UAM respiratory activity observed after 8-OHDPAT injection. CONCLUSIONS: These findings suggest an important role for the 5-HT1A receptors in the neural control of upper airway patency and may be relevant to counteract pharyngeal atonia during obstructive sleep apneas

    Cryo-EM structure of pleconaril-resistant rhinovirus-B5 complexed to the antiviral OBR-5-340 reveals unexpected binding site

    No full text
    Viral inhibitors, such as pleconaril and vapendavir, target conserved regions in the capsids of rhinoviruses (RVs) and enteroviruses (EVs) by binding to a hydrophobic pocket in viral capsid protein 1 (VP1). In resistant RVs and EVs, bulky residues in this pocket prevent their binding. However, recently developed pyrazolopyrimidines inhibit pleconaril-resistant RVs and EVs, and computational modeling has suggested that they also bind to the hydrophobic pocket in VP1. We studied the mechanism of inhibition of pleconaril-resistant RVs using RV-B5 (1 of the 7 naturally pleconaril-resistant rhinoviruses) and OBR-5-340, a bioavailable pyrazolopyrimidine with proven in vivo activity, and determined the 3D-structure of the protein-ligand complex to 3.6 Å with cryoelectron microscopy. Our data indicate that, similar to other capsid binders, OBR-5-340 induces thermostability and inhibits viral adsorption and uncoating. However, we found that OBR-5-340 attaches closer to the entrance of the pocket than most other capsid binders, whose viral complexes have been studied so far, showing only marginal overlaps of the attachment sites. Comparing the experimentally determined 3D structure with the control, RV-B5 incubated with solvent only and determined to 3.2 Å, revealed no gross conformational changes upon OBR-5-340 binding. The pocket of the naturally OBR-5-340-resistant RV-A89 likewise incubated with OBR-5-340 and solved to 2.9 Å was empty. Pyrazolopyrimidines have a rigid molecular scaffold and may thus be less affected by a loss of entropy upon binding. They interact with less-conserved regions than known capsid binders. Overall, pyrazolopyrimidines could be more suitable for the development of new, broadly active inhibitors.This work was funded by the Austrian Science Fund project #27444 (D.B.). M.P. and I.Z. were supported by Erasmus fellowships. N.M. and J. K. were supported by the Bergen Research Foundation (BFS2017TMT01). T.C.M. was supported by funds through the Behörde fĂŒr Wissenschaft, Forschung, und Gleichstellung of the City of Hamburg. Data for RV-B5 and RV-A89, both incubated with OBR-5-340, were collected at the Vienna Biocenter Electron Microscopy Facility. Data collection of the control sample (RV-B5 without OBR-5-340) was funded by iNEXT Grant 5950. iNEXT (project no. 653706) was funded by the Horizon 2020 program of the European Union. This article reflects only the author's view and the European Commission is not responsible for any use that may be made of the information it contains. Czech Infrastructure for Integrative Structural Biology research infrastructure project LM2015043, funded by Ministry of Education, Youth and Sports of the Czech Republic is gratefully acknowledged for the financial support of the measurements at the Central Facility Cryo-electron Microscopy and Tomography Central European Institute of Technology, Masaryk University

    CT Imaging Assessment of Response to Treatment in Allergic Bronchopulmonary Aspergillosis in Adults With Bronchial Asthma

    No full text
    International audienceBackgroundOne of the major challenges in managing allergic bronchopulmonary aspergillosis (ABPA) remains consistent and reproducible assessment of response to treatment.Research questionWhat are the most relevant changes in computed tomography (CT-scan) parameters over time for assessing response to treatment?Study Design and MethodsIn this ancillary study of a randomized clinical trial (NEBULAMB), asthmatic patients with available CT-scan and without exacerbation during a 4-month ABPA exacerbation treatment period (corticosteroids and itraconazole) were included. Changed CT-scan parameters were assessed by systematic analyses of CT-scan findings at initiation (M0) and end of treatment (M4). CT-scans were assessed by two radiologists blinded to the clinical data. Radiological parameters were determined by selecting those showing significant changes over time. Improvement of at least one, without worsening of the others, defined the radiological response. Agreement between radiological changes, clinical and immunologic responses was likewise investigated.ResultsAmong the 139 originally randomized patients, 132 were included. We identified 5 CT-scan parameters showing significant changes at M4: mucoid impaction extent, mucoid impaction density, centrilobular micronodules, consolidation/ground-glass opacities and bronchial wall thickening (P<0.05). These changes were only weakly associated with one another, except for mucoid impaction extent and density. No agreement was observed between clinical or immunologic and radiological responses, assessed as an overall response, or considering each of the parameters (Cohen’s Îș, -0.01 to 0.24).InterpretationChanges in extent and density of mucoid impactions, centrilobular micronodules, consolidation/ground-glass opacities and thickening of the bronchial walls were found to be the most relevant CT-scan parameters to assess radiological response to treatment. A clinical, immunologic and radiological multidimensional approach should be adopted to assess outcomes, probably with a composite definition of response to treatment

    Cellular and molecular interactions of phosphoinositides and peripheral proteins

    No full text

    Potentiality and Synthesis of O- and N-Heterocycles: Pd-Catalyzed Cyclocarbonylative Sonogashira Coupling as a Valuable Route to Phthalans, Isochromans, and Isoindolines

    No full text
    corecore